应用高通量和综合免疫信息学方法设计一种三价亚单位疫苗,以诱导针对新型人类冠状病毒 SARS-CoV、MERS-CoV 和 SARS-CoV-2 的免疫反应。
Applying high throughput and comprehensive immunoinformatics approaches to design a trivalent subunit vaccine for induction of immune response against emerging human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2.
机构信息
Student Research Committee, Babol University of Medical Sciences, Babol, Iran.
USERN Office, Babol University of Medical Sciences, Babol, Iran.
出版信息
J Biomol Struct Dyn. 2022 Aug;40(13):6097-6113. doi: 10.1080/07391102.2021.1876774. Epub 2021 Jan 29.
Coronaviruses (CoVs) cause diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19). Therefore, this study was conducted to combat major CoVs via a trivalent subunit vaccine, which was engineered by implementing sequences of spike (S) protein, nucleocapsid (N), envelope (E), membrane (M) protein, non-structural protein (nsp) 3, and nsp8 antigens. The CTL, HTL, MHC I, and IFN-γ epitopes were predicted via CTLPRED, IEDB, and IFN epitope servers, respectively. Also, to stimulate strong helper T lymphocytes (HTLs) responses, Pan HLA DR-binding epitope (PADRE) was used. Also, for boosting the immune response, β-defensin 2 was added to the construct as an adjuvant. Furthermore, TAT was applied to the vaccine to facilitate the intracellular delivery. Finally, TAT, adjuvant, PADRE, and selected epitopes were appropriately assembled. Based on the predicted epitopes, a trivalent multi-epitope vaccine with a molecular weight of 74.8 kDa was constructed. Further analyses predicted the molecule to be a strong antigen, and a non-allergenic and soluble protein. Secondary and tertiary structures were predicted. Additionally, analyses validated the stability of the proposed vaccine. Molecular docking and molecular dynamics simulation (MDS) showed binding affinity and stability of the vaccine-TLR3 complex was favorable. The predicted epitopes demonstrated a strong potential to stimulate T and B-cell mediated immune responses. Furthermore, codon optimization and cloning guaranteed increased expression. In summary, investigations demonstrated that this next-generation approach might provide a new horizon for the development of a highly immunogenic vaccine against SARS-CoV, MERS-CoV, and SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
冠状病毒(CoV)可引起严重急性呼吸系统综合征(SARS)、中东呼吸系统综合征(MERS)和 2019 年冠状病毒病(COVID-19)等疾病。因此,本研究通过工程化设计三价亚单位疫苗来对抗主要的 CoV,该疫苗构建了刺突(S)蛋白、核衣壳(N)蛋白、包膜(E)蛋白、膜(M)蛋白、非结构蛋白(nsp)3 和 nsp8 抗原的序列。CTL、HTL、MHC I 和 IFN-γ 表位分别通过 CTLPRED、IEDB 和 IFN 表位服务器进行预测。此外,为了刺激强烈的辅助性 T 淋巴细胞(HTL)反应,使用了泛 HLA DR 结合表位(PADRE)。此外,为了增强免疫反应,将β-防御素 2 作为佐剂添加到构建体中。还应用 TAT 疫苗以促进细胞内递呈。最后,TAT、佐剂、PADRE 和选定的表位被适当组装。基于预测的表位,构建了一种分子量为 74.8 kDa 的三价多表位疫苗。进一步的分析预测该分子是一种强抗原,且是非变应原和可溶性蛋白。预测了二级和三级结构。此外,分析验证了所提出疫苗的稳定性。分子对接和分子动力学模拟(MDS)显示疫苗-TLR3 复合物具有良好的结合亲和力和稳定性。预测的表位显示出刺激 T 和 B 细胞介导的免疫反应的强大潜力。此外,密码子优化和克隆保证了表达的增加。总之,研究表明,这种下一代方法可能为开发针对 SARS-CoV、MERS-CoV 和 SARS-CoV-2 的高度免疫原性疫苗提供新的前景。