文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用免疫信息学方法探索 SARS-CoV-2 的不可见抗原,设计候选多表位疫苗。

Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches.

机构信息

Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

Vaccine. 2020 Nov 10;38(48):7612-7628. doi: 10.1016/j.vaccine.2020.10.016. Epub 2020 Oct 9.


DOI:10.1016/j.vaccine.2020.10.016
PMID:33082015
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7546226/
Abstract

SARS-CoV-2 causes a severe respiratory disease called COVID-19. Currently, global health is facing its devastating outbreak. However, there is no vaccine available against this virus up to now. In this study, a novel multi-epitope vaccine against SARS-CoV-2 was designed to provoke both innate and adaptive immune responses. The immunodominant regions of six non-structural proteins (nsp7, nsp8, nsp9, nsp10, nsp12 and nsp14) of SARS-CoV-2 were selected by multiple immunoinformatic tools to provoke T cell immune response. Also, immunodominant fragment of the functional region of SARS-CoV-2 spike (400-510 residues) protein was selected for inducing neutralizing antibodies production. The selected regions' sequences were connected to each other by furin-sensitive linker (RVRR). Moreover, the functional region of β-defensin as a well-known agonist for the TLR-4/MD complex was added at the N-terminus of the vaccine using (EAAAK)3 linker. Also, a CD4 + T-helper epitope, PADRE, was used at the C-terminal of the vaccine by GPGPG and A(EAAAK)2A linkers to form the final vaccine construct. The physicochemical properties, allergenicity, antigenicity, functionality and population coverage of the final vaccine construct were analyzed. The final vaccine construct was an immunogenic, non-allergen and unfunctional protein which contained multiple CD8 + and CD4 + overlapping epitopes, IFN-γ inducing epitopes, linear and conformational B cell epitopes. It could form stable and significant interactions with TLR-4/MD according to molecular docking and dynamics simulations. Global population coverage of the vaccine for HLA-I and II were estimated 96.2% and 97.1%, respectively. At last, the final vaccine construct was reverse translated to design the DNA vaccine. Although the designed vaccine exhibited high efficacy in silico, further experimental validation is necessary.

摘要

SARS-CoV-2 导致一种名为 COVID-19 的严重呼吸道疾病。目前,全球健康正面临着它的毁灭性爆发。然而,到目前为止,还没有针对这种病毒的疫苗。在这项研究中,设计了一种新型的针对 SARS-CoV-2 的多表位疫苗,以引发先天和适应性免疫反应。通过多种免疫信息学工具选择了 SARS-CoV-2 的六种非结构蛋白(nsp7、nsp8、nsp9、nsp10、nsp12 和 nsp14)的免疫优势区域,以引发 T 细胞免疫反应。此外,还选择了 SARS-CoV-2 刺突(400-510 个残基)蛋白功能区的免疫优势片段,用于诱导中和抗体的产生。选择区域的序列通过furin 敏感接头(RVRR)连接在一起。此外,β-防御素作为 TLR-4/MD 复合物的一种众所周知的激动剂,通过(EAAAK)3 接头添加到疫苗的 N 端。此外,通过 GPGPG 和 A(EAAAK)2A 接头,在疫苗的 C 端使用 CD4+T 辅助表位 PADRE,形成最终的疫苗构建体。对最终疫苗构建体的物理化学性质、变应原性、抗原性、功能和人群覆盖率进行了分析。最终疫苗构建体是一种免疫原性、非变应原性和无功能的蛋白质,包含多个 CD8+和 CD4+重叠表位、IFN-γ诱导表位、线性和构象 B 细胞表位。根据分子对接和动力学模拟,它可以与 TLR-4/MD 形成稳定且显著的相互作用。该疫苗对 HLA-I 和 II 的全球人群覆盖率估计分别为 96.2%和 97.1%。最后,将最终的疫苗构建体反向翻译为设计 DNA 疫苗。尽管设计的疫苗在计算机中显示出了很高的功效,但仍需要进一步的实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/c851acae60f5/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/653eaa32c3e9/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/516c6a7f3d23/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/078608a7fdb8/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/6af67d511291/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/4deade559b94/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/e620a34f637c/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/e06ce329773a/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/caaa4ebcc90f/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/c851acae60f5/gr9_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/653eaa32c3e9/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/516c6a7f3d23/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/078608a7fdb8/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/6af67d511291/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/4deade559b94/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/e620a34f637c/gr6_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/e06ce329773a/gr7_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/caaa4ebcc90f/gr8_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8cd/7546226/c851acae60f5/gr9_lrg.jpg

相似文献

[1]
Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches.

Vaccine. 2020-10-9

[2]
Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach.

J Med Virol. 2020-3-5

[3]
Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2.

Infect Dis Poverty. 2020-9-16

[4]
Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein.

Comput Biol Med. 2020-8-13

[5]
Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches.

Front Immunol. 2020-7-28

[6]
Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach.

Int J Biol Macromol. 2020-6-26

[7]
Immunoinformatics-guided designing of epitope-based subunit vaccines against the SARS Coronavirus-2 (SARS-CoV-2).

Immunobiology. 2020-5-11

[8]
Designing an efficient multi-epitope vaccine displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19 infection.

Expert Rev Vaccines. 2020-9-24

[9]
Bioinformatics analysis of epitope-based vaccine design against the novel SARS-CoV-2.

Infect Dis Poverty. 2020-7-10

[10]
Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2.

Virus Res. 2020-7-1

引用本文的文献

[1]
Immuno-informatics analyses of important esophageal cancer associated viruses for multi-epitope vaccine design.

Front Immunol. 2025-7-8

[2]
Immunoinformatics-driven design of a multi-epitope vaccine for effective protection against Machupo virus.

Mol Divers. 2025-7-15

[3]
Immunoinformatics-Aided Design of a Multiepitope Vaccine Against -Associated Chicken Coccidiosis.

Bioinform Biol Insights. 2025-6-16

[4]
Multi-Omics Analysis of the virulence factors and designing of next-generation multi-epitopes Vaccines against Rickettsia prowazekii: a computer-aided vaccine designing approach.

J Comput Aided Mol Des. 2025-5-26

[5]
Pan-vaccinomics strategy for developing a universal multi-epitope vaccine against endocarditis-related pathogens.

Front Immunol. 2025-4-11

[6]
Computational design of multi-epitope vaccine against Hepatitis C Virus infection using immunoinformatics techniques.

PLoS One. 2025-1-24

[7]
Designing a multi-epitope influenza vaccine: an immunoinformatics approach.

Sci Rep. 2024-10-25

[8]
In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins.

Adv Virol. 2024-9-30

[9]
Insights into structural vaccinology harnessed for universal coronavirus vaccine development.

Clin Exp Vaccine Res. 2024-7

[10]
Novel prophylactic and therapeutic multi-epitope vaccine based on Ag85A, Ag85B, ESAT-6, and CFP-10 of Mycobacterium tuberculosis using an immunoinformatics approach.

Osong Public Health Res Perspect. 2024-8

本文引用的文献

[1]
Site-specific N-glycosylation Characterization of Recombinant SARS-CoV-2 Spike Proteins.

Mol Cell Proteomics. 2021

[2]
Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach.

Int J Biol Macromol. 2020-7-15

[3]
Immunoinformatics-guided designing of epitope-based subunit vaccines against the SARS Coronavirus-2 (SARS-CoV-2).

Immunobiology. 2020-5-11

[4]
Efficacy of co-immunization with the DNA and peptide vaccines containing SYCP1 and ACRBP epitopes in a murine triple-negative breast cancer model.

Hum Vaccin Immunother. 2021-1-2

[5]
Design of a Multiepitope-Based Peptide Vaccine against the E Protein of Human COVID-19: An Immunoinformatics Approach.

Biomed Res Int. 2020-5-11

[6]
Design of multi-epitope vaccine candidate against SARS-CoV-2: a study.

J Biomol Struct Dyn. 2021-7

[7]
Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals.

Immunity. 2020-5-3

[8]
A cutting-edge immunoinformatics approach for design of multi-epitope oral vaccine against dreadful human malaria.

Int J Biol Macromol. 2020-9-1

[9]
Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach.

Inform Med Unlocked. 2020

[10]
Designing of precise vaccine construct against visceral leishmaniasis through predicted epitope ensemble: A contemporary approach.

Comput Biol Chem. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索