Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India.
Department of Biochemistry, Kalinga University, Raipur, India.
J Biomol Struct Dyn. 2023;41(22):12464-12479. doi: 10.1080/07391102.2023.2191137. Epub 2023 Mar 19.
MERS-CoV, a zoonotic virus, poses a serious threat to public health globally. Thus, it is imperative to develop an effective vaccination strategy for protection against MERS-CoV. Immunoinformatics and computational biology tools provide a faster and more cost-effective strategy to design potential vaccine candidates. In this work, the spike proteins from different strains of MERS-CoV were selected to predict HTL-epitopes that show affinity for T-helper MHC-class II HTL allelic determinant (HLA-DRB1:0101). The antigenicity and conservation of these epitopes among the selected spike protein variants in different MERS-CoV strains were analyzed. The analysis identified five epitopes with high antigenicity: QSIFYRLNGVGITQQ, DTIKYYSIIPHSIRS, PEPITSLNTKYVAPQ, INGRLTTLNAFVAQQ and GDMYVYSAGHATGTT. Then, a multi-epitope vaccine candidate was designed using linkers and adjuvant molecules. Finally, the vaccine construct was subjected to molecular docking with TLR5 (Toll-like receptor-5). The proposed vaccine construct had strong binding energy of -32.3 kcal/mol when interacting with TLR5.Molecular dynamics simulation analysis showed that the complex of the vaccine construct and TLR5 is stable. Analysis using immune simulation also showed that the prospective multi-epitope vaccine design had the potential to elicit a response within 70 days, with the immune system producing cytokines and immunoglobulins. Finally, codon adaptation and cloning analysis showed that the candidate vaccine could be expressed in the K12 strain. Here we also designed support vaccine construct MEV-2 by using B-cell and CD8+ CTL epitopes to generate the complete immunogenic effect. This study opens new avenues for the extension of research on MERS vaccine development.Communicated by Ramaswamy H. Sarma.
MERS-CoV 是一种人畜共患病病毒,对全球公共卫生构成严重威胁。因此,开发针对 MERS-CoV 的有效疫苗接种策略至关重要。免疫信息学和计算生物学工具为设计潜在疫苗候选物提供了更快、更具成本效益的策略。在这项工作中,选择了来自不同 MERS-CoV 株的刺突蛋白来预测对 T 辅助 MHC 类 II HTL 等位基因决定簇 (HLA-DRB1:0101) 具有亲和力的 HTL-表位。分析了这些表位在不同 MERS-CoV 株的选定刺突蛋白变体中的抗原性和保守性。分析确定了五个具有高抗原性的表位:QSIFYRLNGVGITQQ、DTIKYYSIIPHSIRS、PEPITSLNTKYVAPQ、INGRLTTLNAFVAQQ 和 GDMYVYSAGHATGTT。然后,使用接头和佐剂分子设计了一种多表位疫苗候选物。最后,将疫苗构建体与 TLR5(Toll 样受体-5)进行分子对接。当与 TLR5 相互作用时,所提出的疫苗构建体具有-32.3 kcal/mol 的强结合能。分子动力学模拟分析表明,疫苗构建体与 TLR5 的复合物是稳定的。免疫模拟分析还表明,该前瞻性多表位疫苗设计有可能在 70 天内引起反应,免疫系统产生细胞因子和免疫球蛋白。最后,密码子适应和克隆分析表明候选疫苗可以在 K12 菌株中表达。在这里,我们还使用 B 细胞和 CD8+CTL 表位设计了支持疫苗构建体 MEV-2,以产生完整的免疫原性效应。这项研究为 MERS 疫苗开发的研究扩展开辟了新途径。由 Ramaswamy H. Sarma 交流。