Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125, Berlin, Germany.
Department of Computer Science, Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
BMC Genomics. 2021 Jan 28;22(1):84. doi: 10.1186/s12864-021-07373-z.
Co-localized combinations of histone modifications ("chromatin states") have been shown to correlate with promoter and enhancer activity. Changes in chromatin states over multiple time points ("chromatin state trajectories") have previously been analyzed at promoter and enhancers separately. With the advent of time series Hi-C data it is now possible to connect promoters and enhancers and to analyze chromatin state trajectories at promoter-enhancer pairs.
We present TimelessFlex, a framework for investigating chromatin state trajectories at promoters and enhancers and at promoter-enhancer pairs based on Hi-C information. TimelessFlex extends our previous approach Timeless, a Bayesian network for clustering multiple histone modification data sets at promoter and enhancer feature regions. We utilize time series ATAC-seq data measuring open chromatin to define promoters and enhancer candidates. We developed an expectation-maximization algorithm to assign promoters and enhancers to each other based on Hi-C interactions and jointly cluster their feature regions into paired chromatin state trajectories. We find jointly clustered promoter-enhancer pairs showing the same activation patterns on both sides but with a stronger trend at the enhancer side. While the promoter side remains accessible across the time series, the enhancer side becomes dynamically more open towards the gene activation time point. Promoter cluster patterns show strong correlations with gene expression signals, whereas Hi-C signals get only slightly stronger towards activation. The code of the framework is available at https://github.com/henriettemiko/TimelessFlex .
TimelessFlex clusters time series histone modifications at promoter-enhancer pairs based on Hi-C and it can identify distinct chromatin states at promoter and enhancer feature regions and their changes over time.
组蛋白修饰的共定位组合(“染色质状态”)已被证明与启动子和增强子活性相关。先前已经分别在启动子和增强子上分析了多个时间点的染色质状态变化(“染色质状态轨迹”)。随着时间序列 Hi-C 数据的出现,现在可以连接启动子和增强子,并分析启动子-增强子对的染色质状态轨迹。
我们提出了 TimelessFlex,这是一种基于 Hi-C 信息在启动子和增强子以及启动子-增强子对上研究染色质状态轨迹的框架。TimelessFlex 扩展了我们之前的方法 Timeless,这是一种用于在启动子和增强子特征区域聚类多个组蛋白修饰数据集的贝叶斯网络。我们利用测量开放染色质的时间序列 ATAC-seq 数据来定义启动子和增强子候选物。我们开发了一种期望最大化算法,根据 Hi-C 相互作用将启动子和增强子分配给彼此,并将它们的特征区域共同聚类为配对的染色质状态轨迹。我们发现共同聚类的启动子-增强子对在两侧显示出相同的激活模式,但在增强子侧具有更强的趋势。虽然启动子侧在整个时间序列中保持可访问性,但增强子侧在基因激活时间点变得更加动态地开放。启动子簇模式与基因表达信号显示出强烈的相关性,而 Hi-C 信号仅在朝向激活方向略有增强。该框架的代码可在 https://github.com/henriettemiko/TimelessFlex 上获得。
TimelessFlex 基于 Hi-C 对启动子-增强子对的时间序列组蛋白修饰进行聚类,它可以识别启动子和增强子特征区域的不同染色质状态及其随时间的变化。