Suppr超能文献

[胶囊提高新型冠状病毒肺炎临床治愈率的作用机制及物质基础:基于网络药理学和分子对接技术的研究]

[Mechanism and material basis of capsule for improving clinical cure rate of COVID-19: a study based on network pharmacology and molecular docking technology].

作者信息

Yan Haiyan, Zou Chuncai

机构信息

School of Pharmacy, Wannan Medical College, Wuhu 241002, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2021 Jan 30;41(1):20-30. doi: 10.12122/j.issn.1673-4254.2021.01.03.

Abstract

OBJECTIVE

To explore the potential targets, signal pathways and biological functions that mediate the effect of capsule in improving clinical cure rate of COVID-19 in light of network pharmacology and molecular docking technology.

METHODS

TCMSP, Target, Prediction, CooLGeN, GeneCards, DAVID and other databases were searched for the active components and their target proteins from 13 herbs including Forsythia, Honeysuckle and roasted Ephedra used in capsule. The common target proteins, signal pathways and biological functions shared by these components and the clinical manifestations of COVID-19 (fever, cough, and fatigue) were identified to construct the network consisting of the component drugs in Lianhua Qingwen capsule, the active ingredients of, their targets of action, and the biological functions involved using Gephi software.

RESULTS

A total 160 active components including MOL000522, and MOL003283, MOL003365, MOL003006, MOL003014 in 13 component drugs in Lianhua Qingwen capsule produced therapeutic effects against COVID-19 through 57 target proteins including MAPK1, IL6, HSP90AA1, TNF, and CCL2, involving 35 signaling pathways including NOD-like receptor signaling pathway and Toll-like receptor signaling pathway. The results of molecular docking showed that 83 chemical components had total scores no less than 5.0 for docking with 12 target proteins (including MAPK1, IL6, and HSP90AA1) with high binding activities to form stable conformations. The binding of MOL000522, MOL004989, and MOL003330 with MAPK1; MOL001495 and MOL001494 with NLRP3; MOL004908, MOL004863 and MOL004806 with HSP90AA1; MOL001749 with TLR9; and MOL001495 with AKT1 all had total scores exceeding 9.0.

CONCLUSIONS

capsule contains multiple effective ingredients to improve clinical cure rate of COVID-19, and its therapeutic effect is mediated by multiple protein targets, signal pathways and biological functions.

摘要

目的

运用网络药理学和分子对接技术,探索连花清瘟胶囊提高新型冠状病毒肺炎(COVID-19)临床治愈率的潜在靶点、信号通路及生物学功能。

方法

通过中药系统药理学数据库与分析平台(TCMSP)、Target、Prediction、CooLGeN、GeneCards、DAVID等数据库,检索连花清瘟胶囊中连翘、金银花、炙麻黄等13味中药的活性成分及其靶蛋白。确定这些成分与COVID-19临床表现(发热、咳嗽、乏力)共有的靶蛋白、信号通路及生物学功能,使用Gephi软件构建由连花清瘟胶囊中的组方药物、活性成分、作用靶点及涉及的生物学功能组成的网络。

结果

连花清瘟胶囊13味组方药物中的160个活性成分(如MOL000522、MOL003283、MOL003365、MOL003006、MOL003014等)通过57个靶蛋白(如MAPK1、IL6、HSP90AA1、TNF、CCL2等)发挥抗COVID-19的治疗作用,涉及35条信号通路(如NOD样受体信号通路、Toll样受体信号通路等)。分子对接结果显示,83个化学成分与12个靶蛋白(包括MAPK1、IL6、HSP90AA1等)对接的总分不低于5.0,结合活性高,可形成稳定构象。其中,MOL000522、MOL004989、MOL003330与MAPK1;MOL001495、MOL001494与NLRP3;MOL004908、MOL004863、MOL004806与HSP90AA1;MOL001749与TLR9;MOL001495与AKT1的对接总分均超过9.0。

结论

连花清瘟胶囊含有多种有效成分提高COVID-19临床治愈率,其治疗作用由多个蛋白靶点、信号通路及生物学功能介导。

相似文献

4
[Overview of Meta-analysis of Lianhua Qingwen preparations in treatment of viral diseases].
Zhongguo Zhong Yao Za Zhi. 2022 Aug;47(16):4505-4516. doi: 10.19540/j.cnki.cjcmm.20220510.501.
5
[Mechanism of decoction for treatment of COVID-19: analysis based on network pharmacology and molecular docking technology].
Nan Fang Yi Ke Da Xue Xue Bao. 2020 May 30;40(5):616-623. doi: 10.12122/j.issn.1673-4254.2020.05.02.
6
Meta-analysis on the effect of combining Lianhua Qingwen with Western medicine to treat coronavirus disease 2019.
J Integr Med. 2022 Jan;20(1):26-33. doi: 10.1016/j.joim.2021.10.005. Epub 2021 Nov 2.
7
Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19.
Drug Dev Ind Pharm. 2020 Aug;46(8):1345-1353. doi: 10.1080/03639045.2020.1788070. Epub 2020 Jul 8.

引用本文的文献

2
COVID-19 Therapeutic Potential of Natural Products.
Int J Mol Sci. 2023 May 31;24(11):9589. doi: 10.3390/ijms24119589.
5
Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19.
Front Immunol. 2022 Apr 5;13:834942. doi: 10.3389/fimmu.2022.834942. eCollection 2022.
6
Efficacy and Safety of Lianhua Qingke Tablets in the Treatment of Mild and Common-Type COVID-19: A Randomized, Controlled, Multicenter Clinical Study.
Evid Based Complement Alternat Med. 2022 Feb 10;2022:8733598. doi: 10.1155/2022/8733598. eCollection 2022.
8
Potential Genes Associated with COVID-19 and Comorbidity.
Int J Med Sci. 2022 Jan 24;19(2):402-415. doi: 10.7150/ijms.67815. eCollection 2022.
9
Machine Learning Applications in Drug Repurposing.
Interdiscip Sci. 2022 Mar;14(1):15-21. doi: 10.1007/s12539-021-00487-8. Epub 2022 Jan 23.
10
New tale on LianHuaQingWen: IL6R/IL6/IL6ST complex is a potential target for COVID-19 treatment.
Aging (Albany NY). 2021 Nov 3;13(21):23913-23935. doi: 10.18632/aging.203666.

本文引用的文献

2
Hypercapnia Suppresses Macrophage Antiviral Activity and Increases Mortality of Influenza A Infection via Akt1.
J Immunol. 2020 Jul 15;205(2):489-501. doi: 10.4049/jimmunol.2000085. Epub 2020 Jun 15.
3
Characterization of the Japanese flounder NLRP3 inflammasome in restricting Edwardsiella piscicida colonization in vivo.
Fish Shellfish Immunol. 2020 Aug;103:169-180. doi: 10.1016/j.fsi.2020.04.063. Epub 2020 May 6.
4
Phosphorylation-dependent substrate selectivity of protein kinase B (AKT1).
J Biol Chem. 2020 Jun 12;295(24):8120-8134. doi: 10.1074/jbc.RA119.012425. Epub 2020 Apr 29.
5
Low-Dose Radiation Therapy Promotes Radiation Pneumonitis by Activating NLRP3 Inflammasome.
Int J Radiat Oncol Biol Phys. 2020 Jul 15;107(4):804-814. doi: 10.1016/j.ijrobp.2020.02.643. Epub 2020 Apr 22.
6
MiR-342 attenuates lipopolysaccharide-induced acute lung injury via inhibiting MAPK1 expression.
Clin Exp Pharmacol Physiol. 2020 Aug;47(8):1448-1454. doi: 10.1111/1440-1681.13315. Epub 2020 Apr 22.
7
The role of NLRP3 inflammasome in infection-related, immune-mediated and autoimmune skin diseases.
J Dermatol Sci. 2020 Jun;98(3):146-151. doi: 10.1016/j.jdermsci.2020.03.001. Epub 2020 Mar 6.
8
Direct Binding to NLRP3 Pyrin Domain as a Novel Strategy to Prevent NLRP3-Driven Inflammation and Gouty Arthritis.
Arthritis Rheumatol. 2020 Jul;72(7):1192-1202. doi: 10.1002/art.41245. Epub 2020 May 27.
9
Dysregulation of TLR9 in neonates leads to fatal inflammatory disease driven by IFN-γ.
Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3074-3082. doi: 10.1073/pnas.1911579117. Epub 2020 Jan 24.
10
Converging TLR9 and PI3Kgamma signaling induces sterile inflammation and organ damage.
Sci Rep. 2019 Dec 13;9(1):19085. doi: 10.1038/s41598-019-55504-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验