Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28223 Pozuelo de Alarcón, Madrid, Spain;
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain.
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2010243118.
Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of cell wall mutants () to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of plants to the necrotrophic and vascular pathogens negatively impacted fitness traits, such as biomass and seed yield. Enhanced resistance of plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the tested. Pectin-enriched wall fractions isolated from plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to resistance. Cell walls of plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.
植物细胞壁是复杂的结构,会响应发育和环境线索进行动态重塑,在抗病反应中发挥重要功能。我们通过确定一组细胞壁突变体()对具有不同寄生方式的病原体的敏感性来测试细胞壁对免疫的特异性贡献:一种血管细菌、一种坏死真菌和一种生物营养卵菌。值得注意的是,与野生型植物相比,测试的大多数(29/34;85.3%)细胞壁突变体对这些病原体中的至少一种的抗性反应发生了改变,这说明了细胞壁组成在决定抗病表型方面的相关性。我们发现,与坏死和血管病原体相比,细胞壁突变体增强的抗性对生物量和种子产量等适应性特征产生负面影响。细胞壁突变体增强的抗性不仅由经典免疫途径介导,如那些受植物激素或微生物相关分子模式调节的途径,在测试的细胞壁突变体中没有失调。从细胞壁突变体中分离出富含果胶的细胞壁部分会在野生型植物中引发免疫反应,这表明细胞壁介导的防御途径可能有助于细胞壁突变体的抗性。通过糖组分析检测特定细胞壁碳水化合物部分,揭示了细胞壁突变体的细胞壁组成具有高度多样性的改变。对糖组分析数据的数学分析确定了特定细胞壁碳水化合物部分的数量与细胞壁突变体抗病表型之间的相关性。这些数据支持植物细胞壁组成在植物免疫反应调节和平衡抗病/发育权衡方面的相关和特定功能。