Suppr超能文献

线性β-1,2-葡聚糖触发植物的免疫特征并增强其抗病性。

Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants.

作者信息

Fuertes-Rabanal María, Largo-Gosens Asier, Fischer Alicia, Munzert Kristina S, Carrasco-López Cristian, Sánchez-Vallet Andrea, Engelsdorf Timo, Mélida Hugo

机构信息

Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain.

Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain.

出版信息

J Exp Bot. 2024 Dec 4;75(22):7337-7350. doi: 10.1093/jxb/erae368.

Abstract

Immune responses in plants are triggered by molecular patterns or elicitors, recognized by plant pattern recognition receptors. Such molecular patterns are the consequence of host-pathogen interactions, and the response cascade activated after their perception is known as pattern-triggered immunity (PTI). Glucans have emerged as key players in PTI, but the ability of certain glucans to stimulate defensive responses in plants remains understudied. This work focused on identifying novel glucan oligosaccharides as molecular patterns. The ability of various microorganism-derived glucans to trigger PTI responses was tested, revealing that specific microbial-derived molecules, such as short linear β-1,2-glucans, trigger this response in plants by increasing the production of reactive oxygen species (ROS), mitogen-activated protein kinase phosphorylation, and differential expression of defence-related genes in Arabidopsis thaliana. Pre-treatments with β-1,2-glucan trisaccharide (B2G3) improved Arabidopsis defence against bacterial and fungal infections in a hypersusceptible genotype. The knowledge generated was then transferred to the monocotyledonous model species maize and wheat, demonstrating that these plants also respond to β-1,2-glucans, with increased ROS production and improved protection against fungal infections following B2G3 pre-treatments. In summary, as with other β-glucans, plants perceive β-1,2-glucans as warning signals which stimulate defence responses against phytopathogens.

摘要

植物中的免疫反应由分子模式或激发子触发,这些分子模式由植物模式识别受体识别。此类分子模式是宿主与病原体相互作用的结果,其被感知后激活的反应级联被称为模式触发免疫(PTI)。葡聚糖已成为PTI中的关键因子,但某些葡聚糖刺激植物防御反应的能力仍未得到充分研究。这项工作聚焦于鉴定新型葡寡糖作为分子模式。测试了各种微生物来源的葡聚糖触发PTI反应的能力,结果表明特定的微生物来源分子,如短链线性β-1,2-葡聚糖,通过增加拟南芥中活性氧(ROS)的产生、丝裂原活化蛋白激酶磷酸化以及防御相关基因的差异表达来触发植物中的这种反应。用β-1,2-葡聚糖三糖(B2G3)预处理可提高超敏感基因型拟南芥对细菌和真菌感染的防御能力。然后将所获得的知识应用于单子叶模式植物玉米和小麦,结果表明这些植物也对β-1,2-葡聚糖有反应,在B2G3预处理后ROS产生增加,对真菌感染的抵抗力增强。总之,与其他β-葡聚糖一样,植物将β-1,2-葡聚糖视为刺激针对植物病原体防御反应的警告信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a252/11630039/06feac70aa8c/erae368_fig1.jpg

相似文献

1
Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants.
J Exp Bot. 2024 Dec 4;75(22):7337-7350. doi: 10.1093/jxb/erae368.
2
Cell wall-derived mixed-linked β-1,3/1,4-glucans trigger immune responses and disease resistance in plants.
Plant J. 2021 May;106(3):601-615. doi: 10.1111/tpj.15185. Epub 2021 Mar 22.
3
Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis.
Plant J. 2018 Jan;93(1):34-49. doi: 10.1111/tpj.13755. Epub 2017 Dec 2.
4
5
Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.
New Phytol. 2015 Apr;206(2):606-13. doi: 10.1111/nph.13356. Epub 2015 Mar 11.
6
Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria.
Mol Plant Pathol. 2013 Jan;14(1):58-70. doi: 10.1111/j.1364-3703.2012.00827.x. Epub 2012 Sep 4.
7
Targeting the pattern-triggered immunity pathway to enhance resistance to Fusarium graminearum.
Mol Plant Pathol. 2019 May;20(5):626-640. doi: 10.1111/mpp.12781. Epub 2019 Feb 6.
9
Extracellular DNA as an elicitor of broad-spectrum resistance in Arabidopsis thaliana.
Plant Sci. 2021 Nov;312:111036. doi: 10.1016/j.plantsci.2021.111036. Epub 2021 Aug 26.

引用本文的文献

1
Aspergillus-derived β-glucan nanoparticles: a dual strategy for management and tomato plant growth enhancement.
Front Plant Sci. 2025 Jul 30;16:1611582. doi: 10.3389/fpls.2025.1611582. eCollection 2025.
2
New glycoside hydrolase families of β-1,2-glucanases.
Protein Sci. 2025 Jun;34(6):e70147. doi: 10.1002/pro.70147.
3
Enzymes that catalyze cyclization of β-1,2-glucans.
Appl Microbiol Biotechnol. 2025 Feb 20;109(1):49. doi: 10.1007/s00253-025-13429-x.

本文引用的文献

1
Study of fungal cell wall evolution through its monosaccharide composition: An insight into fungal species interacting with plants.
Cell Surf. 2024 May 25;11:100127. doi: 10.1016/j.tcsw.2024.100127. eCollection 2024 Jun.
3
Plant cell wall-mediated disease resistance: Current understanding and future perspectives.
Mol Plant. 2024 May 6;17(5):699-724. doi: 10.1016/j.molp.2024.04.003. Epub 2024 Apr 9.
4
A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity.
Science. 2024 Feb 16;383(6684):732-739. doi: 10.1126/science.adj9529. Epub 2024 Feb 15.
9
Synthesis of Fungal Cell Wall Oligosaccharides and Their Ability to Trigger Plant Immune Responses.
European J Org Chem. 2022 Jul 21;2022(27):e202200313. doi: 10.1002/ejoc.202200313. Epub 2022 Jul 15.
10
Immune priming in plants: from the onset to transgenerational maintenance.
Essays Biochem. 2022 Sep 30;66(5):635-646. doi: 10.1042/EBC20210082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验