Suppr超能文献

将炎症性血清生物标志物纳入前列腺癌检测风险计算器。

Integrating inflammatory serum biomarkers into a risk calculator for prostate cancer detection.

机构信息

UCD Conway Institute of Biomedical and Biomolecular Science, Dublin, Ireland.

UCD School of Medicine, University College Dublin, Dublin, Ireland.

出版信息

Sci Rep. 2021 Jan 28;11(1):2525. doi: 10.1038/s41598-021-81965-3.

Abstract

Improved prostate cancer detection methods would avoid over-diagnosis of clinically indolent disease informing appropriate treatment decisions. The aims of this study were to investigate the role of a panel of Inflammation biomarkers to inform the need for a biopsy to diagnose prostate cancer. Peripheral blood serum obtained from 436 men undergoing transrectal ultrasound guided biopsy were assessed for a panel of 18 inflammatory serum biomarkers in addition to Total and Free Prostate Specific Antigen (PSA). This panel was integrated into a previously developed Irish clinical risk calculator (IPRC) for the detection of prostate cancer and high-grade prostate cancer (Gleason Score ≥ 7). Using logistic regression and multinomial regression methods, two models (Logst-RC and Multi-RC) were developed considering linear and nonlinear effects of the panel in conjunction with clinical and demographic parameters for determination of the two endpoints. Both models significantly improved the predictive ability of the clinical model for detection of prostate cancer (from 0.656 to 0.731 for Logst-RC and 0.713 for Multi-RC) and high-grade prostate cancer (from 0.716 to 0.785 for Logst-RC and 0.767 for Multi-RC) and demonstrated higher clinical net benefit. This improved discriminatory power and clinical utility may allow for individualised risk stratification improving clinical decision making.

摘要

改进的前列腺癌检测方法可以避免对临床惰性疾病的过度诊断,从而为适当的治疗决策提供信息。本研究的目的是研究一组炎症生物标志物在告知是否需要进行活检以诊断前列腺癌方面的作用。对 436 名接受经直肠超声引导活检的男性的外周血血清进行了 18 种炎症血清生物标志物的检测,除了总前列腺特异性抗原(PSA)和游离前列腺特异性抗原(fPSA)外。该小组还被纳入了之前开发的爱尔兰临床风险计算器(IPRC)中,用于检测前列腺癌和高级别前列腺癌(Gleason 评分≥7)。使用逻辑回归和多项回归方法,针对两种终点,开发了两个模型(Logst-RC 和 Multi-RC),考虑了面板与临床和人口统计学参数的线性和非线性效应。这两种模型都显著提高了临床模型对前列腺癌(从 Logst-RC 的 0.656 提高到 0.731,Multi-RC 为 0.713)和高级别前列腺癌(从 Logst-RC 的 0.716 提高到 0.785,Multi-RC 为 0.767)的预测能力,并显示出更高的临床净效益。这种改进的区分能力和临床实用性可能允许进行个体化的风险分层,从而改善临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b738/7844261/527589095c5c/41598_2021_81965_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验