Lewis John A, Cortes Francisco Javier Quintero, Liu Yuhgene, Miers John C, Verma Ankit, Vishnugopi Bairav S, Tippens Jared, Prakash Dhruv, Marchese Thomas S, Han Sang Yun, Lee Chanhee, Shetty Pralav P, Lee Hyun-Wook, Shevchenko Pavel, De Carlo Francesco, Saldana Christopher, Mukherjee Partha P, McDowell Matthew T
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
Nat Mater. 2021 Apr;20(4):503-510. doi: 10.1038/s41563-020-00903-2. Epub 2021 Jan 28.
Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid-solid interfaces remains limited compared to at solid-liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (LiSnPS) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.
尽管固态电池工程取得了进展,但与固液界面相比,我们对控制固-固界面电化学行为和稳定性的化学机械现象的理解仍然有限。在这里,我们使用原位同步加速器X射线计算机断层扫描来研究电池循环过程中锂/固态电解质界面的演变,揭示了孔隙形成、界面相生长和体积变化之间的复杂相互作用如何决定电池性能。在对称电池中直接观察到锂剥离过程中的孔隙形成,并且量化了导致锂与固态电解质(LiSnPS)界面处电流收缩的接触损失,发现这是电池失效的主要原因。发现界面相在充电时具有氧化还原活性,并且由于任一电极处的偏摩尔体积不匹配而发生整体体积变化。这些结果为化学机械现象如何影响电池性能提供了见解,从而促进了固态电池的发展。