Suppr超能文献

通过共轧干法实现的坚固界面和降低的操作压力,助力稳定的全固态电池。

Robust interface and reduced operation pressure enabled by co-rolling dry-process for stable all-solid-state batteries.

作者信息

Lee Dong Ju, Jeon Yuju, Lee Jung-Pil, Zhang Lanshuang, Koh Ki Hwan, Li Feng, Mu Anthony U, Wu Junlin, Chen Yu-Ting, McNulty Seamus, Tang Wei, Vicencio Marta, Xu Dapeng, Kim Jiyoung, Chen Zheng

机构信息

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.

LG Energy Solution, Ltd. LG Science Park, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of South Korea.

出版信息

Nat Commun. 2025 May 6;16(1):4200. doi: 10.1038/s41467-025-59363-4.

Abstract

The dry-process is a sustainable and promising fabrication method for all-solid-state batteries by eliminating solvents. However, a pragmatic fabrication design for thin and robust solid-state electrolyte (SSE) layers has not been established. Herein, we report a dry-process approach that enhances mechanical stability of SSE layers from film fabrication to cell operation. By co-rolling thick SSE and positive electrode feeds, a uniform, thin SSE layer (50 µm) and a high loading positive electrode layer (5 mAh cm) with high active material ratio (80 wt%) are simultaneously achieved. This SSE-positive electrode integrated film exhibits enhanced physical properties and cyclability (> 80% retention after 500 cycles) at low stack pressure (2 MPa) compared to the freestanding counterparts, attributed to reinforced and intimate SSE-positive electrode interface constructed during co-rolling process. Additionally, an all-solid-state pouch cell with high stack-level specific energy (310 Wh kg) and energy density (805 Wh L) operating at 30 °C and 5 MPa is demonstrated.

摘要

干法工艺是一种通过去除溶剂来制造全固态电池的可持续且有前景的方法。然而,尚未建立一种针对薄且坚固的固态电解质(SSE)层的实用制造设计。在此,我们报告一种干法工艺方法,该方法可增强从薄膜制造到电池运行过程中SSE层的机械稳定性。通过将厚的SSE和正极进料共同轧制,可同时实现均匀的薄SSE层(50 µm)和具有高活性材料比例(80 wt%)的高负载正极层(5 mAh cm)。与独立的对应物相比,这种SSE-正极集成薄膜在低堆叠压力(2 MPa)下表现出增强的物理性能和循环稳定性(500次循环后保留率> 80%),这归因于在共同轧制过程中构建的增强且紧密的SSE-正极界面。此外,展示了一种在30°C和5 MPa下运行的具有高堆叠级比能量(310 Wh kg)和能量密度(805 Wh L)的全固态软包电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验