Gu Mong-Wen, Peng Hao Howard, Chen I-Wen Peter, Chen Chun-Hsien
Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan.
Department of Applied Science, National Taitung University, Taitung, Taiwan.
Nat Mater. 2021 May;20(5):658-664. doi: 10.1038/s41563-020-00876-2. Epub 2021 Jan 28.
Understanding chemical bonding and conductivity at the electrode-molecule interface is key for the operation of single-molecule junctions. Here we apply the d-band theory that describes interfacial interactions between adsorbates and transition metal surfaces to study electron transport across these devices. We realized bimetallic Au electrodes modified with a monoatomic Ag adlayer to connect α,ω-alkanoic acids (HOC(CH)COH). The force required to break the molecule-electrode binding and the contact conductance G are 1.1 nN and 0.29 G (the conductance quantum, 1 G = 2e/h ≈ 77.5 μS), which makes these junctions, respectively, 1.3-1.8 times stronger and 40-60-fold more conductive than junctions with bare Au or Ag electrodes. A similar performance was found for Au electrodes modified by Cu monolayers. By integrating the Newns-Anderson model with the Hammer-Nørskov d-band model, we explain how the surface d bands strengthen the adsorption and promote interfacial electron transport, which provides an alternative avenue for the optimization of molecular electronic devices.
了解电极 - 分子界面处的化学键合和导电性是单分子结运行的关键。在此,我们应用描述吸附质与过渡金属表面之间界面相互作用的d带理论来研究这些器件中的电子传输。我们实现了用单原子银吸附层修饰的双金属金电极来连接α,ω - 链烷酸(HOC(CH)COH)。打破分子 - 电极结合所需的力和接触电导G分别为1.1 nN和0.29 G(电导量子,1 G = 2e/h ≈ 77.5 μS),这使得这些结分别比裸金或银电极结强1.3 - 1.8倍且导电性高40 - 60倍。对于用铜单层修饰的金电极也发现了类似的性能。通过将纽恩斯 - 安德森模型与哈默 - 诺尔斯科夫d带模型相结合,我们解释了表面d带如何增强吸附并促进界面电子传输,这为分子电子器件的优化提供了一条替代途径。