Yue Jianchao, Yang Chaoyi, Zhang Yu, Xiong Qianqian, Luo Wei
College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
Chem Sci. 2025 May 27. doi: 10.1039/d5sc02884a.
The preparation of active and CO-tolerant platinum-free electrocatalysts toward the hydrogen oxidation reaction (HOR) under alkaline conditions is significant for the practical development of anion exchange membrane fuel cells. Herein, nitrogen atoms are intercalated into the interstitial void of rhodium (N-Rh/C) nanocrystals, which results in electron-deficient and electron-rich Rh sites simultaneously to coordinate the binding energies of multiple key intermediates, achieving highly active and CO-resistant alkaline HOR. surface-enhanced infrared absorption spectroscopy and density functional theory calculations illustrate that the introduction of interstitial N atoms suppresses the electronic back-donation from Rh 4d to the CO 2π* orbital in electron-deficient sites, thereby weakening the CO adsorption and improving CO resistance. Additionally, the enhanced OH adsorption in electron-rich sites can release more free water into the adjacent gap region, increasing water connectivity and hydrogen-bond networks in the electrical double layer and accelerating alkaline HOR kinetics.
在碱性条件下制备对氢氧化反应(HOR)具有活性且耐CO的无铂电催化剂对于阴离子交换膜燃料电池的实际发展具有重要意义。在此,氮原子插入铑(N-Rh/C)纳米晶体的间隙空位中,这同时导致铑位点出现缺电子和富电子情况,以协调多种关键中间体的结合能,实现高活性和抗CO的碱性氢氧化反应。表面增强红外吸收光谱和密度泛函理论计算表明,间隙N原子的引入抑制了缺电子位点中从Rh 4d到CO 2π*轨道的电子回授,从而减弱了CO吸附并提高了抗CO能力。此外,富电子位点中增强的OH吸附可将更多的自由水释放到相邻的间隙区域,增加双电层中的水连通性和氢键网络,并加速碱性氢氧化反应动力学。