Suppr超能文献

利用成分典型双标图探索地球化学数据。

Exploration of geochemical data with compositional canonical biplots.

作者信息

Graffelman Jan, Pawlowsky-Glahn Vera, Egozcue Juan José, Buccianti Antonella

机构信息

Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Avinguda Diagonal 647, Barcelona 08028, Spain.

Department of Biostatistics, University of Washington, UW Tower, 15th Floor, 4333 Brooklyn Avenue NE, Seattle 98105, WA, USA.

出版信息

J Geochem Explor. 2018 Nov;194:120-133. doi: 10.1016/j.gexplo.2018.07.014. Epub 2018 Jul 25.

Abstract

The study of the relationships between two compositions is of paramount importance in geochemical data analysis. This paper develops a compositional version of canonical correlation analysis, called CoDA-CCO, for this purpose. We consider two approaches, using the centred log-ratio transformation and the calculation of all possible pairwise log-ratios within sets. The relationships between both approaches are pointed out, and their merits are discussed. The related covariance matrices are structurally singular, and this is efficiently dealt with by using generalized inverses. We develop compositional canonical biplots and detail their properties. The canonical biplots are shown to be powerful tools for discovering the most salient relationships between two compositions. Some guidelines for compositional canonical biplot construction are discussed. A geochemical data set with X-ray fluorescence spectrometry measurements on major oxides and trace elements of European floodplains is used to illustrate the proposed method. The relationships between an analysis based on centred log-ratios and on isometric log-ratios are also shown.

摘要

在地球化学数据分析中,研究两种成分之间的关系至关重要。为此,本文开发了一种称为CoDA - CCO的典型相关分析的成分版本。我们考虑两种方法,一种是使用中心对数比变换,另一种是计算集合内所有可能的成对对数比。指出了两种方法之间的关系,并讨论了它们的优点。相关的协方差矩阵在结构上是奇异的,通过使用广义逆有效地处理了这一问题。我们开发了成分典型双标图并详细阐述了它们的性质。典型双标图被证明是发现两种成分之间最显著关系的有力工具。讨论了成分典型双标图构建的一些指导原则。使用一个关于欧洲洪泛平原主要氧化物和微量元素的X射线荧光光谱测量的地球化学数据集来说明所提出的方法。还展示了基于中心对数比和等距对数比的分析之间的关系。

相似文献

1
Exploration of geochemical data with compositional canonical biplots.利用成分典型双标图探索地球化学数据。
J Geochem Explor. 2018 Nov;194:120-133. doi: 10.1016/j.gexplo.2018.07.014. Epub 2018 Jul 25.
2
Weak dual generalized inverse of a dual matrix and its applications.对偶矩阵的弱对偶广义逆及其应用。
Heliyon. 2023 May 26;9(6):e16624. doi: 10.1016/j.heliyon.2023.e16624. eCollection 2023 Jun.
9
Compositional data in neuroscience: If you've got it, log it!神经科学中的成分数据:如果你得到了它,就记录下来!
J Neurosci Methods. 2016 Sep 15;271:154-9. doi: 10.1016/j.jneumeth.2016.07.008. Epub 2016 Jul 20.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验