Suppr超能文献

基于 9 个差异甲基化 mRNAs 的风险评分模型预测透明细胞肾细胞癌患者的预后。

A Risk Score Model Based on Nine Differentially Methylated mRNAs for Predicting Prognosis of Patients with Clear Cell Renal Cell Carcinoma.

机构信息

Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Hutong, Dongcheng District, Beijing 100730, China.

出版信息

Dis Markers. 2021 Jan 14;2021:8863799. doi: 10.1155/2021/8863799. eCollection 2021.

Abstract

PURPOSE

DNA methylation alterations play important roles in initiation and progression of clear cell renal cell carcinoma (ccRCC). In this study, we attempted to identify differentially methylated mRNA signatures with prognostic value for ccRCC.

METHODS

The mRNA methylation and expression profiling data of 306 ccRCC tumors were downloaded from The Cancer Genome Atlas (TCGA) to screen differentially methylated lncRNAs and mRNAs (DMLs and DMMs) between bad and good prognosis patients. Uni- and multivariable Cox regression analyses and LASSO Cox-PH regression analysis were used to select prognostic lncRNAs and mRNAs. Corresponding risk scores were calculated and compared for predictive performance in the training set using Kaplan-Meier OS and ROC curve analyses. The optimal risk score was then identified and validated in the validation set. Function enrichment analysis was conducted.

RESULTS

This study screened 461 DMMs and 63 DMLs between good prognosis and bad prognosis patients, and furthermore, nine mRNAs and six lncRNAs were identified as potential prognostic molecules. Compared to nine-mRNA status risk score model, six-lncRNA methylation risk score model, and six-lncRNA status risk score model, the nine-mRNA methylation risk score model showed superiority for prognosis stratification of ccRCC patients in the training set. The prognostic ability of the nine-mRNA methylation risk score model was validated in the validation set. The nine prognostic mRNAs were functionally associated with neuroactive ligand receptor interaction and inflammation-related pathways.

CONCLUSION

The nine-mRNA methylation signature (DMRTA2, DRGX, FAM167A, FGGY, FOXI2, KRTAP2-1, TCTEX1D1, TTBK1, and UBE2QL1) may be a useful prognostic biomarker and tool for ccRCC patients. The present results would be helpful to elucidate the possible pathogenesis of ccRCC.

摘要

目的

DNA 甲基化改变在透明细胞肾细胞癌(ccRCC)的发生和发展中起重要作用。本研究试图鉴定具有 ccRCC 预后价值的差异甲基化 mRNA 特征。

方法

从癌症基因组图谱(TCGA)下载了 306 例 ccRCC 肿瘤的 mRNA 甲基化和表达谱数据,以筛选预后不良和预后良好患者之间差异甲基化的长非编码 RNA(lncRNA)和信使 RNA(mRNA)(DML 和 DMM)。使用单变量和多变量 Cox 回归分析以及 LASSO Cox-PH 回归分析筛选预后 lncRNA 和 mRNA。在训练集中使用 Kaplan-Meier OS 和 ROC 曲线分析计算并比较相应的风险评分,以评估预测性能。然后在验证集中确定并验证最佳风险评分。进行功能富集分析。

结果

本研究在预后良好和预后不良患者之间筛选出 461 个 DMM 和 63 个 DML,并进一步鉴定出 9 个 mRNA 和 6 个 lncRNA 作为潜在的预后分子。与 9-mRNA 状态风险评分模型、6-lncRNA 甲基化风险评分模型和 6-lncRNA 状态风险评分模型相比,9-mRNA 甲基化风险评分模型在训练集中更能对 ccRCC 患者进行预后分层。在验证集中验证了 9-mRNA 甲基化风险评分模型的预后能力。9 个预后 mRNAs 与神经活性配体受体相互作用和炎症相关途径有关。

结论

9 个 mRNA 甲基化特征(DMRTA2、DRGX、FAM167A、FGGY、FOXI2、KRTAP2-1、TCTEX1D1、TTBK1 和 UBE2QL1)可能是 ccRCC 患者有用的预后生物标志物和工具。本研究结果将有助于阐明 ccRCC 的可能发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66ef/7822694/f00c16b1f911/DM2021-8863799.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验