Suppr超能文献

用于红外光伏的高效钝化PbSe量子点固体

Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics.

作者信息

Liu Sisi, Xiong Kao, Wang Kang, Liang Guijie, Li Ming-Yu, Tang Haodong, Yang Xiaokun, Huang Zhen, Lian Linyuan, Tan Manlin, Wang Kai, Gao Liang, Song Haisheng, Zhang Daoli, Gao Jianbo, Lan Xinzheng, Tang Jiang, Zhang Jianbing

机构信息

School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.

出版信息

ACS Nano. 2021 Feb 23;15(2):3376-3386. doi: 10.1021/acsnano.0c10373. Epub 2021 Jan 29.

Abstract

Infrared (IR) solar cells are promising devices for significantly improving the power conversion efficiency of common solar cells by harvesting the low-energy IR photons. PbSe quantum dots (QDs) are superior IR photon absorbing materials due to their strong quantum confinement and thus strong interdot electronic coupling. However, the high chemical activity of PbSe QDs leads to etching and poor passivation in ligand exchange, resulting in a high trap-state density and a high open circuit voltage () deficit. Here we develop a hybrid ligand co-passivation strategy to simultaneously passivate the Pb and Se sites; that is, halide anions passivate the Pb sites and Cd cations passivate the Se sites. The cation and anion hybrid passivation substantially improves the quality of PbSe QD solids, giving rise to an excellent trap-state control and prolonged carrier lifetime. A high and a high short circuit current density () are achieved simultaneously in the IR QD solar cells based on this hybrid ligand treatment. Finally, a IR-PCE of 1.31% under the 1100-nm-filtered solar illumination is achieved in the PbSe QD solar cells, which is the highest IR-PCE for PbSe QD IR solar cells at present. Additionally, the PbSe QD devices show a high external quantum efficiency of 80% at ∼1295 nm.

摘要

红外(IR)太阳能电池是很有前景的器件,通过收集低能量红外光子可显著提高普通太阳能电池的功率转换效率。PbSe量子点(QDs)因其强量子限制以及由此产生的强量子点间电子耦合,是优异的红外光子吸收材料。然而,PbSe量子点的高化学活性导致在配体交换中发生蚀刻且钝化效果不佳,从而产生高陷阱态密度和高开路电压()缺陷。在此,我们开发了一种混合配体共钝化策略来同时钝化Pb和Se位点;即卤化物阴离子钝化Pb位点,Cd阳离子钝化Se位点。阳离子和阴离子混合钝化显著提高了PbSe量子点固体的质量,实现了出色的陷阱态控制并延长了载流子寿命。基于这种混合配体处理的红外量子点太阳能电池同时实现了高开路电压和高短路电流密度()。最终,PbSe量子点太阳能电池在1100纳米滤光太阳光照下实现了1.31%的红外光电转换效率(IR-PCE),这是目前PbSe量子点红外太阳能电池中最高的IR-PCE。此外,PbSe量子点器件在约1295纳米处显示出80%的高外部量子效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验