Suppr超能文献

Quantum Droplets of Dipolar Mixtures.

作者信息

Bisset R N, Ardila L A Peña, Santos L

机构信息

Institut für Theoretische Physik, Leibniz Universität Hannover, Germany.

Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria.

出版信息

Phys Rev Lett. 2021 Jan 15;126(2):025301. doi: 10.1103/PhysRevLett.126.025301.

Abstract

Recently achieved two-component dipolar Bose-Einstein condensates open exciting possibilities for the study of mixtures of ultradilute quantum liquids. While nondipolar self-bound (without external confinement) mixtures are necessarily miscible with an approximately fixed ratio between the two densities, the density ratio for the dipolar case is free. Therefore, self-bound dipolar mixtures present qualitatively novel and much richer physics, characterized by three possible ground-state phases: miscible, symmetric immiscible, and asymmetric immiscible, which may in principle occur at any population imbalance. Self-bound immiscible droplets are possible due to mutual nonlocal intercomponent attraction, which results in the formation of a droplet molecule. Moreover, our analysis of the impurity regime shows that quantum fluctuations in the majority component crucially modify the miscibility of impurities. Our work opens intriguing perspectives for the exploration of spinor physics in ultradilute liquids, which should resemble to some extent that of ^{4}He-^{3}He droplets and impurity-doped helium droplets.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验