Suppr超能文献

SGLT2 抑制剂诱导的轻度酮血症改善糖尿病视网膜病变中的视网膜缺氧——一种新假说。

SGLT2 Inhibitor-Induced Low-Grade Ketonemia Ameliorates Retinal Hypoxia in Diabetic Retinopathy-A Novel Hypothesis.

机构信息

Veterans Affairs Medical Center, San Diego, CA, USA.

Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA, USA.

出版信息

J Clin Endocrinol Metab. 2021 Apr 23;106(5):1235-1244. doi: 10.1210/clinem/dgab050.

Abstract

Diabetic retinopathy (DR) is a well-recognized microvascular complication of diabetes. Growing evidence suggests that, in addition to retinal vascular damage, there is significant damage to retinal neural tissue in DR. Studies reveal neuronal damage before clinically evident vascular lesions and DR is now classified as a neurovascular complication. Hyperglycemia causes retinal damage through complex metabolic pathways leading to oxidative stress, inflammation, vascular damage, capillary ischemia, and retinal tissue hypoxia. Retinal hypoxia is further worsened by high oxygen consumption in the rods. Persistent hypoxia results in increases in vascular endothelial growth factor (VEGF) and other pro-angiogenic factors leading to proliferative DR/macular edema and progressive visual impairment. Optimal glucose control has favorable effects in DR. Other treatments for DR include laser photocoagulation, which improves retinal oxygenation by destroying the high oxygen consuming rods and their replacement by low oxygen consuming glial tissue. Hypoxia is a potent stimulator of VEGF, and intravitreal anti-VEGF antibodies are effective in regressing macular edema and in some studies, retinal neovascularization. In this review, we highlight the complex pathophysiology of DR with a focus on retinal oxygen/fuel consumption and hypoxic damage to retinal neurons. We discuss potential mechanisms through which sodium-glucose cotransporter 2 (SGLT2) inhibitors improve retinal hypoxia-through ketone bodies, which are energetically as efficient as glucose and yield more ATP per molecule of oxygen consumed than fat, with less oxidative stress. Retinal benefits would occur through improved fuel energetics, less hypoxia and through the anti-inflammatory/oxidative stress effects of ketone bodies. Well-designed studies are needed to explore this hypothesis.

摘要

糖尿病性视网膜病变(DR)是一种公认的糖尿病微血管并发症。越来越多的证据表明,除了视网膜血管损伤外,DR 还存在明显的视网膜神经组织损伤。研究表明,在临床上明显的血管病变和 DR 之前就存在神经元损伤,现在DR 被归类为神经血管并发症。高血糖通过导致氧化应激、炎症、血管损伤、毛细血管缺血和视网膜组织缺氧的复杂代谢途径引起视网膜损伤。杆状细胞的高耗氧量进一步加剧了视网膜缺氧。持续缺氧会导致血管内皮生长因子(VEGF)和其他促血管生成因子的增加,导致增殖性 DR/黄斑水肿和进行性视力损害。最佳血糖控制对 DR 有良好的效果。DR 的其他治疗方法包括激光光凝,通过破坏高耗氧的杆状细胞并用低耗氧的神经胶质组织替代它们,从而改善视网膜氧合。缺氧是 VEGF 的强有力刺激物,玻璃体内抗 VEGF 抗体对视黄斑水肿和某些研究中的视网膜新生血管有效。在这篇综述中,我们强调了 DR 的复杂病理生理学,重点是视网膜氧/燃料消耗和缺氧对视网膜神经元的损伤。我们讨论了钠-葡萄糖共转运蛋白 2(SGLT2)抑制剂通过酮体改善视网膜缺氧的潜在机制,酮体在能量上与葡萄糖一样有效,每消耗一个氧分子产生的 ATP 比脂肪多,氧化应激也更少。通过改善燃料能量、减少缺氧和酮体的抗炎/抗氧化应激作用,会产生视网膜获益。需要进行精心设计的研究来探索这一假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验