Suppr超能文献

无监督的语义属性发现、控制和去纠缠及其在异常检测中的应用。

Unsupervised Discovery, Control, and Disentanglement of Semantic Attributes With Applications to Anomaly Detection.

机构信息

Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, U.S.A.

Department of Mathematics and Statistics, Queens University, ON K7L 3N6, Canada

出版信息

Neural Comput. 2021 Mar;33(3):802-826. doi: 10.1162/neco_a_01359. Epub 2021 Jan 29.

Abstract

Our work focuses on unsupervised and generative methods that address the following goals: (1) learning unsupervised generative representations that discover latent factors controlling image semantic attributes, (2) studying how this ability to control attributes formally relates to the issue of latent factor disentanglement, clarifying related but dissimilar concepts that had been confounded in the past, and (3) developing anomaly detection methods that leverage representations learned in the first goal. For goal 1, we propose a network architecture that exploits the combination of multiscale generative models with mutual information (MI) maximization. For goal 2, we derive an analytical result, lemma 1, that brings clarity to two related but distinct concepts: the ability of generative networks to control semantic attributes of images they generate, resulting from MI maximization, and the ability to disentangle latent space representations, obtained via total correlation minimization. More specifically, we demonstrate that maximizing semantic attribute control encourages disentanglement of latent factors. Using lemma 1 and adopting MI in our loss function, we then show empirically that for image generation tasks, the proposed approach exhibits superior performance as measured in the quality and disentanglement of the generated images when compared to other state-of-the-art methods, with quality assessed via the Fréchet inception distance (FID) and disentanglement via mutual information gap. For goal 3, we design several systems for anomaly detection exploiting representations learned in goal 1 and demonstrate their performance benefits when compared to state-of-the-art generative and discriminative algorithms. Our contributions in representation learning have potential applications in addressing other important problems in computer vision, such as bias and privacy in AI.

摘要

我们的工作重点是无监督和生成方法,以实现以下目标:(1)学习无监督生成表示,发现控制图像语义属性的潜在因素,(2)研究这种控制属性的能力如何与潜在因素解缠结的问题正式相关,澄清过去混淆的相关但不同的概念,(3)开发利用第一个目标中学习的表示的异常检测方法。对于目标 1,我们提出了一种网络架构,利用多尺度生成模型与互信息(MI)最大化的组合。对于目标 2,我们推导出一个分析结果,引理 1,为两个相关但不同的概念带来了清晰性:生成网络控制其生成的图像的语义属性的能力,这是由于 MI 最大化,以及解缠结潜在空间表示的能力,通过总相关最小化获得。更具体地,我们证明了最大化语义属性控制鼓励潜在因素的解缠结。使用引理 1 并在我们的损失函数中采用 MI,然后我们通过 Fréchet inception distance(FID)评估的质量和生成图像的解缠结来证明,与其他最先进的方法相比,所提出的方法在图像生成任务中表现出更好的性能,与其他最先进的方法相比,所提出的方法在图像生成任务中表现出更好的性能。通过互信息差距。对于目标 3,我们设计了几种利用目标 1 中学习的表示进行异常检测的系统,并证明了它们与最先进的生成和判别算法相比的性能优势。我们在表示学习方面的贡献可能应用于解决计算机视觉中的其他重要问题,例如人工智能中的偏见和隐私问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验