Suppr超能文献

使用高斯过程回归方法为滚动轴承故障预测选择有效降解特征

Selection of efficient degradation features for rolling element bearing prognosis using Gaussian Process Regression method.

作者信息

Kumar Prem Shankar, Kumaraswamidhas L A, Laha S K

机构信息

Department of Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India.

Central Mechanical Engineering Research Institute (CSIR-CMERI) Durgapur 713209, WB, India.

出版信息

ISA Trans. 2021 Jun;112:386-401. doi: 10.1016/j.isatra.2020.12.020. Epub 2020 Dec 11.

Abstract

Rolling Element Bearings are one of the most ubiquitous machine elements used in various machineries in the manufacturing industry. Prognosis and estimation of residual life of rolling element bearing are very important for efficient implementation of health monitoring and condition-based maintenance. In this paper, a rolling element bearing fault or degradation trend prediction is modeled using Gaussian Process Regression (GPR) method. Various vibration features based on signal complexity, namely Shannon entropy, permutation entropy, and approximate entropy are estimated to obtain the bearing degradation trend. When fault or degradation occurs in rolling element bearing, there is a subtle change in the dynamics of the system and subsequently, there are changes in the features extracted from the vibration signal. In this paper, a comparative analysis of various kernel functions of the GPR model is carried out using accuracy-based metrics. In addition, the combination of goodness of metric (monotonicity (Mon), robustness (Rob), and prognosability (Pro)), namely hybrid metric, is proposed to select the efficient bearing degradation trend of features. Further, the GPR at ARD exponential kernel has been employed to make the prognosis of degradation trend in bearings with a 95% confidence interval (CI). The proposed methodology is validated through a mathematical model of the simulated vibration signal. Finally, from the simulated and experimental data, it is demonstrated that the entropy features have better performance than the statistical features.

摘要

滚动轴承是制造业中各种机械使用最普遍的机械元件之一。滚动轴承剩余寿命的预测和估计对于有效实施健康监测和基于状态的维护非常重要。本文采用高斯过程回归(GPR)方法对滚动轴承故障或退化趋势进行建模。基于信号复杂度估计了各种振动特征,即香农熵、排列熵和近似熵,以获得轴承的退化趋势。当滚动轴承出现故障或退化时,系统动力学存在细微变化,随后从振动信号中提取的特征也会发生变化。本文使用基于精度的指标对GPR模型的各种核函数进行了比较分析。此外,还提出了度量优度(单调性(Mon)、鲁棒性(Rob)和可预测性(Pro))的组合,即混合度量,以选择有效的轴承退化趋势特征。此外,采用ARD指数核的GPR对轴承的退化趋势进行预测,置信区间为95%。通过模拟振动信号的数学模型对所提方法进行了验证。最后,从模拟和实验数据表明,熵特征比统计特征具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验