Suppr超能文献

混合解释的图算法。

Graph Algorithms for Mixture Interpretation.

机构信息

Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.

Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.

出版信息

Genes (Basel). 2021 Jan 27;12(2):185. doi: 10.3390/genes12020185.

Abstract

The scale of genetic methods are presently being expanded: forensic genetic assays previously were limited to tens of loci, but now technologies allow for a transition to forensic genomic approaches that assess thousands to millions of loci. However, there are subtle distinctions between genetic assays and their genomic counterparts (especially in the context of forensics). For instance, forensic genetic approaches tend to describe a locus as a haplotype, be it a microhaplotype or a short tandem repeat with its accompanying flanking information. In contrast, genomic assays tend to provide not haplotypes but sequence variants or differences, variants which in turn describe how the alleles apparently differ from the reference sequence. By the given construction, mitochondrial genetic assays can be thought of as genomic as they often describe genetic differences in a similar way. The mitochondrial genetics literature makes clear that sequence differences, unlike the haplotypes they encode, are not comparable to each other. Different alignment algorithms and different variant calling conventions may cause the same haplotype to be encoded in multiple ways. This ambiguity can affect evidence and reference profile comparisons as well as how "match" statistics are computed. In this study, a graph algorithm is described (and implemented in the MMDIT (Mitochondrial Mixture Database and Interpretation Tool) R package) that permits the assessment of forensic match statistics on mitochondrial DNA mixtures in a way that is invariant to both the variant calling conventions followed and the alignment parameters considered. The algorithm described, given a few modest constraints, can be used to compute the "random man not excluded" statistic or the likelihood ratio. The performance of the approach is assessed in in silico mitochondrial DNA mixtures.

摘要

遗传方法的规模目前正在扩大

法医遗传分析以前仅限于几十个基因座,但现在的技术允许向评估数千到数百万个基因座的法医基因组方法过渡。然而,遗传分析和它们的基因组对应物之间存在细微的区别(尤其是在法医学的背景下)。例如,法医遗传方法倾向于将基因座描述为单倍型,无论是微单倍型还是带有其伴随侧翼信息的短串联重复。相比之下,基因组分析往往提供的不是单倍型,而是序列变体或差异,这些变体反过来描述等位基因如何明显不同于参考序列。根据给定的结构,线粒体遗传分析可以被认为是基因组的,因为它们通常以类似的方式描述遗传差异。线粒体遗传学文献清楚地表明,序列差异与它们编码的单倍型不同,彼此之间不可比。不同的比对算法和不同的变异调用约定可能导致相同的单倍型以多种方式编码。这种歧义会影响证据和参考谱的比较,以及“匹配”统计数据的计算方式。在这项研究中,描述了一种图算法(并在 MMDIT(线粒体混合物数据库和解释工具)R 包中实现),该算法允许以不受所遵循的变异调用约定和考虑的比对参数影响的方式评估线粒体 DNA 混合物的法医匹配统计数据。所描述的算法,在几个适度的约束下,可以用于计算“随机排除的男人”统计数据或似然比。该方法的性能在模拟的线粒体 DNA 混合物中进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c6e/7911948/aa5ba6b353f8/genes-12-00185-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验