Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching b. Munich, Germany.
Chemical Physics, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
J Chem Phys. 2021 Jan 28;154(4):045102. doi: 10.1063/5.0033802.
Over the last several decades, the light-harvesting protein complexes of purple bacteria have been among the most popular model systems for energy transport in excitonic systems in the weak and intermediate intermolecular coupling regime. Despite this extensive body of scientific work, significant questions regarding the excitonic states and the photo-induced dynamics remain. Here, we address the low-temperature electronic structure and excitation dynamics in the light-harvesting complex 2 of Rhodopseudomonas acidophila by two-dimensional electronic spectroscopy. We find that, although at cryogenic temperature energy relaxation is very rapid, exciton mobility is limited over a significant range of excitation energies. This points to the presence of a sub-200 fs, spatially local energy-relaxation mechanism and suggests that local trapping might contribute substantially more in cryogenic experiments than under physiological conditions where the thermal energy is comparable to or larger than the static disorder.
在过去的几十年中,紫色细菌的光捕获蛋白复合物一直是弱和中等分子间耦合条件下激子系统能量传输的最受欢迎的模型系统之一。尽管有大量的科学研究,但关于激子态和光诱导动力学的问题仍然存在。在这里,我们通过二维电子光谱研究了嗜酸红假单胞菌的光捕获复合物 2 在低温下的电子结构和激发动力学。我们发现,尽管在低温下能量弛豫非常迅速,但激子的迁移率在很大的激发能量范围内受到限制。这表明存在一个 200 飞秒以下的、空间局部的能量弛豫机制,并表明在低温实验中,局部俘获可能比在生理条件下贡献更大,因为在生理条件下,热能与静态无序相当或更大。