Wang Huiqing, Cosnefroy Matthias, Hornikx Maarten
Building Physics and Services, Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands.
J Acoust Soc Am. 2021 Jan;149(1):569. doi: 10.1121/10.0003340.
This paper presents a numerical scheme of arbitrary order of accuracy in both space and time, based on the arbitrary high-order derivatives methodology, for transient acoustic simulations. The scheme combines the nodal discontinuous Galerkin method for the spatial discretization and the Taylor series integrator (TSI) for the time integration. The main idea of the TSI is a temporal Taylor series expansion of all unknown acoustic variables in which the time derivatives are replaced by spatial derivatives via the Cauchy-Kovalewski procedure. The computational cost for the time integration is linearly proportional to the order of accuracy. To increase the computational efficiency for simulations involving strongly varying mesh sizes or material properties, a local time-stepping (LTS) algorithm accompanying the arbitrary high-order derivatives discontinuous Galerkin (ADER-DG) scheme, which ensures correct communications between domains with different time step sizes, is proposed. A numerical stability analysis in terms of the maximum allowable time step sizes is performed. Based on numerical convergence analysis, we demonstrate that for nonuniform meshes, a consistent high-order accuracy in space and time is achieved using ADER-DG with LTS. An application to the sound propagation across a transmissive noise barrier validates the potential of the proposed method for practical problems demanding high accuracy.
本文基于任意高阶导数方法,提出了一种用于瞬态声学模拟的在空间和时间上具有任意精度阶数的数值格式。该格式将用于空间离散化的节点间断伽辽金方法和用于时间积分的泰勒级数积分器(TSI)相结合。TSI的主要思想是对所有未知声学变量进行时间泰勒级数展开,其中通过柯西 - 科瓦列夫斯基过程将时间导数替换为空间导数。时间积分的计算成本与精度阶数成线性比例。为了提高涉及强烈变化的网格尺寸或材料属性的模拟的计算效率,提出了一种伴随任意高阶导数间断伽辽金(ADER - DG)格式的局部时间步长(LTS)算法,该算法确保了具有不同时间步长的区域之间的正确通信。进行了关于最大允许时间步长的数值稳定性分析。基于数值收敛性分析,我们证明了对于非均匀网格,使用带有LTS的ADER - DG在空间和时间上实现了一致的高阶精度。在透射式噪声屏障上的声音传播应用验证了所提出方法对于要求高精度的实际问题的潜力。