Suppr超能文献

求解理查兹方程的时空间断伽辽金方法的误差估计与自适应方法

Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation.

作者信息

Dolejší Vít, Shin Hyun-Geun, Vlasák Miloslav

机构信息

Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague, Czech Republic.

Faculty of Civil Engineering, Czech Technical University, Thakurova 7, Prague 6, 166 29 Czech Republic.

出版信息

J Sci Comput. 2024;101(1):11. doi: 10.1007/s10915-024-02650-x. Epub 2024 Aug 20.

Abstract

We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the -adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.

摘要

我们提出了一种高阶时空自适应方法,用于数值求解描述通过可变饱和介质的流动运动的理查兹方程。离散化基于时空间断伽辽金方法,该方法具有高稳定性和准确性,并且能够自然地处理变化的网格。我们在基于残差的范数中推导了可靠且高效的后验误差估计。这些估计使用了在时空单元或时空块上局部构建的平衡良好的空间和时间通量重构。估计的准确性通过数值实验得到验证。此外,我们开发了h自适应方法,并在一个实际相关的例子上展示了其效率和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfed/11415456/b9d9346e6367/10915_2024_2650_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验