Suppr超能文献

利用单步基因组最佳线性无偏预测模型对活体水貂进行大小和质量性状分级,进行美欧水貂基因组选择。

Genomic selection in American mink (Neovison vison) using a single-step genomic best linear unbiased prediction model for size and quality traits graded on live mink.

机构信息

Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark.

Animal Breeding, Department of Animal Science, University of Bonn, Bonn, Germany.

出版信息

J Anim Sci. 2021 Jan 1;99(1). doi: 10.1093/jas/skab003.

Abstract

Genomic selection relies on single-nucleotide polymorphisms (SNPs), which are often collected using medium-density SNP arrays. In mink, no such array is available; instead, genotyping by sequencing (GBS) can be used to generate marker information. Here, we evaluated the effect of genomic selection for mink using GBS. We compared the estimated breeding values (EBVs) from single-step genomic best linear unbiased prediction (SSGBLUP) models to the EBV from ordinary pedigree-based BLUP models. We analyzed seven size and quality traits from the live grading of brown mink. The phenotype data consisted of ~20,600 records for the seven traits from the mink born between 2013 and 2016. Genotype data included 2,103 mink born between 2010 and 2014, mostly breeding animals. In total, 28,336 SNP markers from 391 scaffolds were available for genomic prediction. The pedigree file included 29,212 mink. The predictive ability was assessed by the correlation (r) between progeny trait deviation (PTD) and EBV, and the regression of PTD on EBV, using 5-fold cross-validation. For each fold, one-fifth of animals born in 2014 formed the validation set. For all traits, the SSGBLUP model resulted in higher accuracies than the BLUP model. The average increase in accuracy was 15% (between 3% for fur clarity and 28% for body weight). For three traits (body weight, silky appearance of the under wool, and guard hair thickness), the difference in r between the two models was significant (P < 0.05). For all traits, the regression slopes of PTD on EBV from SSGBLUP models were closer to 1 than regression slopes from BLUP models, indicating SSGBLUP models resulted in less bias of EBV for selection candidates than the BLUP models. However, the regression coefficients did not differ significantly. In conclusion, the SSGBLUP model is superior to conventional BLUP model in the accurate selection of superior animals, and, thus, it would increase genetic gain in a selective breeding program. In addition, this study shows that GBS data work well in genomic prediction in mink, demonstrating the potential of GBS for genomic selection in livestock species.

摘要

基因组选择依赖于单核苷酸多态性 (SNP),通常使用中密度 SNP 芯片进行收集。在水貂中,没有这样的芯片;相反,可以使用测序基因型 (GBS) 来生成标记信息。在这里,我们评估了使用 GBS 对水貂进行基因组选择的效果。我们比较了单步基因组最佳线性无偏预测 (SSGBLUP) 模型的估计育种值 (EBV) 与基于普通系谱的 BLUP 模型的 EBV。我们分析了棕色水貂活体分级的七个大小和质量性状。表型数据包括 2013 年至 2016 年出生的约 20600 条七个性状的记录。基因型数据包括 2010 年至 2014 年出生的 2103 只水貂,主要是繁殖动物。总共可用于基因组预测的 391 个支架的 28336 个 SNP 标记。系谱文件包括 29212 只水貂。通过使用 5 倍交叉验证,通过后裔性状偏差 (PTD) 与 EBV 的相关性 (r) 和 PTD 对 EBV 的回归来评估预测能力。对于每一个折叠,2014 年出生的五分之一的动物形成验证集。对于所有性状,SSGBLUP 模型的准确性都高于 BLUP 模型。准确性的平均提高了 15%(从皮草清晰度的 3%到体重的 28%)。对于三个性状(体重、底绒丝滑外观和护毛厚度),两个模型之间的 r 差异具有统计学意义(P < 0.05)。对于所有性状,SSGBLUP 模型的 PTD 对 EBV 的回归斜率比 BLUP 模型更接近 1,表明 SSGBLUP 模型比 BLUP 模型对候选动物的 EBV 偏差更小,但是回归系数没有显著差异。总之,在优秀动物的准确选择方面,SSGBLUP 模型优于传统的 BLUP 模型,因此,它将增加选择性繁殖计划中的遗传增益。此外,本研究表明 GBS 数据在水貂的基因组预测中效果良好,展示了 GBS 在家畜基因组选择中的潜力。

相似文献

3
Opportunities for genomic selection in American mink: A simulation study.美国水貂基因组选择的机会:一项模拟研究。
PLoS One. 2019 Mar 14;14(3):e0213873. doi: 10.1371/journal.pone.0213873. eCollection 2019.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验