Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Biochimie. 2021 Mar;182:217-227. doi: 10.1016/j.biochi.2021.01.013. Epub 2021 Jan 29.
Flavin adenine dinucleotide synthetase (FADS), a bifunctional prokaryotic enzyme, is involved in the synthesis of two vital cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Here, we investigated the biochemical characteristics of FADS from Staphylococcus aureus (Sa), a pathogenic bacteria causing food-borne diseases. The SaFADS possesses riboflavin kinase (RFK) and FMN adenylyltransferase (FMNAT) activities that transforms riboflavin to FMN and FMN to FAD, respectively. The FMNAT domain also exhibits reversible FAD pyrophosphorylase activity (FADpp). Further, we show that the FMNAT and FADpp activities are dependent on the reducing environment. Mutations of the conserved K289 and F290 residues present on the RFK domain affect the kinetic parameters of both the RFK and FMNAT domains. Additionally, the molecular dynamics analysis of apo and riboflavin: ATP: Mg ternary complex of SaFADS shows that F290 is involved in stabilizing the active site geometry to hold the enzyme-substrate complex. In addition, the deletion of the αh2 helix that acts as a connecting linker between the FMNAT and RFK domains showed substantial loss of their activities. The helix deletion could have affected the flap motion of L2c, L4c, β4n and L3n present in the close proximity resulting in the distortion of the active site geometry. In conclusion, our study has characterized the RFK and FMNAT activities of SaFADS and shown the importance of conserved K289 and F290 in RFK activity. As FADSs are potential drug targets, understanding their mechanism of action might help in discovering species-specific antibacterial drugs.
黄素腺嘌呤二核苷酸合成酶(FADS)是一种双功能的原核酶,参与两种重要辅酶的合成,黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)。在这里,我们研究了引起食源性疾病的致病菌金黄色葡萄球菌(Sa)的 FADS 的生化特性。SaFADS 具有核黄素激酶(RFK)和 FMN 腺苷酰转移酶(FMNAT)活性,分别将核黄素转化为 FMN 和 FMN 转化为 FAD。FMNAT 结构域还表现出可逆的 FAD 焦磷酸酶活性(FADpp)。此外,我们表明 FMNAT 和 FADpp 活性依赖于还原环境。RFK 结构域上保守的 K289 和 F290 残基的突变会影响 RFK 和 FMNAT 结构域的动力学参数。此外,SaFADS 的 apo 和核黄素:ATP:Mg 三元复合物的分子动力学分析表明,F290 参与稳定活性位点几何形状以保持酶-底物复合物。此外,作为 FMNAT 和 RFK 结构域之间连接接头的αh2 螺旋的缺失导致其活性显著丧失。螺旋缺失可能会影响 L2c、L4c、β4n 和 L3n 等靠近活性位点的 flap 运动,导致活性位点几何形状的扭曲。总之,我们的研究表征了 SaFADS 的 RFK 和 FMNAT 活性,并表明 RFK 活性中保守的 K289 和 F290 的重要性。由于 FADS 是潜在的药物靶标,了解其作用机制可能有助于发现针对特定物种的抗菌药物。