Suppr超能文献

辅因子和病原体:羊布鲁氏菌黄素单核苷酸和黄素腺嘌呤二核苷酸(FAD)合酶的 FAD 生物合成。

Cofactors and pathogens: Flavin mononucleotide and flavin adenine dinucleotide (FAD) biosynthesis by the FAD synthase from Brucella ovis.

机构信息

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.

Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Zaragoza, Spain.

出版信息

IUBMB Life. 2022 Jul;74(7):655-671. doi: 10.1002/iub.2576. Epub 2021 Nov 23.

Abstract

The biosynthesis of the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), cofactors used by 2% of proteins, occurs through the sequential action of two ubiquitous activities: a riboflavinkinase (RFK) that phosphorylates the riboflavin (RF) precursor to FMN, and a FMN:adenylyltransferase (FMNAT) that transforms FMN into FAD. In most mammals two different monofunctional enzymes have each of these activities, but in prokaryotes a single bifunctional enzyme, FAD synthase (FADS), holds them. Differential structural and functional traits for RFK and FMNAT catalysis between bacteria and mammals, as well as within the few bacterial FADSs so far characterized, has envisaged the potentiality of FADSs from pathogens as targets for the development of species-specific inhibitors. Here, we particularly characterize the FADS from the ovine pathogen Brucella ovis (BoFADS), causative agent of brucellosis. We show that BoFADS has RFK activity independently of the media redox status, but its FMNAT activity (in both forward and reverse senses) only occurs under strong reducing conditions. Moreover, kinetics for flavin and adenine nucleotides binding to the RFK site show that BoFADS binds preferentially the substrates of the RFK reaction over the products and that the adenine nucleotide must bind prior to flavin entrapment. These results, together with multiple sequence alignments and phylogenetic analysis, point to variability in the less conserved regions as contributing to the species-specific features in prokaryotic FADSs, including those from pathogens, that allow them to adopt alternative strategies in FMN and FAD biosynthesis and overall flavin homeostasis.

摘要

黄素单核苷酸 (FMN) 和黄素腺嘌呤二核苷酸 (FAD) 的生物合成,这两种辅因子被 2%的蛋白质使用,是通过两种普遍存在的活性的顺序作用发生的:一种核黄素激酶 (RFK) 将核黄素 (RF) 前体磷酸化为 FMN,一种 FMN:腺嘌呤核苷酸转移酶 (FMNAT) 将 FMN 转化为 FAD。在大多数哺乳动物中,这两种不同的单功能酶都具有这两种活性,但在原核生物中,一种单一的双功能酶,即 FAD 合酶 (FADS),拥有它们。细菌和哺乳动物之间以及迄今为止表征的少数几种细菌 FADS 中,RFK 和 FMNAT 催化的差异结构和功能特征,使病原体的 FADS 有可能成为开发种特异性抑制剂的靶点。在这里,我们特别描述了绵羊病原体布鲁氏菌 (Brucella ovis) (BoFADS) 的 FADS,它是布鲁氏菌病的病原体。我们表明,BoFADS 具有独立于介质氧化还原状态的 RFK 活性,但它的 FMNAT 活性(正向和反向)仅在强还原条件下发生。此外,黄素和腺嘌呤核苷酸与 RFK 结合位点的结合动力学表明,BoFADS 优先结合 RFK 反应的底物而不是产物,并且腺嘌呤核苷酸必须在黄素捕获之前结合。这些结果,以及多重序列比对和系统发育分析,表明在不太保守的区域的变异性有助于原核 FADS 的种特异性特征,包括那些来自病原体的特征,这使它们能够在 FMN 和 FAD 生物合成以及整体黄素动态平衡中采用替代策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/057b/9299109/4e6c12a17735/IUB-74-655-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验