Suppr超能文献

基于离散小波变换的表面肌电图分析基础研究——影响肌肉力量的中枢神经系统因素分析

Fundamental research on surface electromyography analysis using discrete wavelet transform-an analysis of the central nervous system factors affecting muscle strength.

作者信息

Morozumi Kazunori, Ohsugi Hironori, Morishita Katsuyuki, Yokoi Yuka

机构信息

Department of Physical Therapy, Faculty of Social Work Studies, Josai International University: 1 Gumyo, Togane, Chiba 283-8555, Japan.

出版信息

J Phys Ther Sci. 2021 Jan;33(1):63-68. doi: 10.1589/jpts.33.63. Epub 2021 Jan 5.

Abstract

[Purpose] We aimed to investigate the central nervous system factors that affect muscle strength based on the differences in load and time using the discrete wavelet transform, which is capable of a time-frequency-potential analysis. [Participants and Methods] Surface electromyography (EMG) of the right upper bicep muscle in 16 healthy adult males were measured at 10% MVC (maximum voluntary isometric contraction), 30%, 50%, 70%, and 80% to 100% MVC. We used a discrete wavelet transform for the electromyographic analysis and calculated the median instantaneous frequency spectrum (MDF) and frequency band component content rate (FCR) at 1-ms intervals as well as their spectrum integrated values (I-EMG). [Results] MDF and FCR tended to be high throughout the measurements. Specifically, the high-frequency band component content rate was high at the time of low muscle strength; fast-twitch muscle fibers may be involved during these muscle contractions. We found significant changes in the I-EMG as the muscle strength increased from 10% MVC to 100% MVC. [Conclusion] Analyzing the surface electromyograph using discrete wavelet transform enabled us to assess the central nervous system factors that increase in the EMG amplitude integrated values and change in the median instantaneous frequency spectrum and in the frequency band component content rate.

摘要

[目的] 我们旨在基于负荷和时间的差异,利用能够进行时频电位分析的离散小波变换,研究影响肌肉力量的中枢神经系统因素。[参与者与方法] 对16名健康成年男性右上臂二头肌进行表面肌电图(EMG)测量,测量强度分别为10%最大自主等长收缩(MVC)、30%、50%、70%以及80%至100%MVC。我们使用离散小波变换进行肌电图分析,并以1毫秒为间隔计算中位瞬时频率谱(MDF)、频段成分含量率(FCR)及其频谱积分值(I-EMG)。[结果] 在整个测量过程中,MDF和FCR往往较高。具体而言,在低肌肉力量时高频段成分含量率较高;在这些肌肉收缩过程中可能涉及快肌纤维。我们发现随着肌肉力量从10%MVC增加到100%MVC,I-EMG有显著变化。[结论] 使用离散小波变换分析表面肌电图,使我们能够评估中枢神经系统因素,这些因素会使EMG振幅积分值增加,中位瞬时频率谱和频段成分含量率发生变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1d6/7829554/69fa4579b088/jpts-33-063-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验