Insausti-Delgado Ainhoa, López-Larraz Eduardo, Omedes Jason, Ramos-Murguialday Ander
Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, Tübingen, Germany.
Front Neurosci. 2021 Jan 15;14:593360. doi: 10.3389/fnins.2020.593360. eCollection 2020.
Neuromuscular electrical stimulation (NMES) of the nervous system has been extensively used in neurorehabilitation due to its capacity to engage the muscle fibers, improving muscle tone, and the neural pathways, sending afferent volleys toward the brain. Although different neuroimaging tools suggested the capability of NMES to regulate the excitability of sensorimotor cortex and corticospinal circuits, how the intensity and dose of NMES can neuromodulate the brain oscillatory activity measured with electroencephalography (EEG) is still unknown to date. We quantified the effect of NMES parameters on brain oscillatory activity of 12 healthy participants who underwent stimulation of wrist extensors during rest. Three different NMES intensities were included, two below and one above the individual motor threshold, fixing the stimulation frequency to 35 Hz and the pulse width to 300 μs. Firstly, we efficiently removed stimulation artifacts from the EEG recordings. Secondly, we analyzed the effect of amplitude and dose on the sensorimotor oscillatory activity. On the one hand, we observed a significant NMES intensity-dependent modulation of brain activity, demonstrating the direct effect of afferent receptor recruitment. On the other hand, we described a significant NMES intensity-dependent dose-effect on sensorimotor activity modulation over time, with below-motor-threshold intensities causing cortical inhibition and above-motor-threshold intensities causing cortical facilitation. Our results highlight the relevance of intensity and dose of NMES, and show that these parameters can influence the recruitment of the sensorimotor pathways from the muscle to the brain, which should be carefully considered for the design of novel neuromodulation interventions based on NMES.
由于神经肌肉电刺激(NMES)能够使肌纤维参与活动、改善肌张力,并通过向大脑发送传入冲动来调节神经通路,因此在神经康复中得到了广泛应用。尽管不同的神经成像工具表明NMES有能力调节感觉运动皮层和皮质脊髓回路的兴奋性,但NMES的强度和剂量如何通过脑电图(EEG)调节大脑振荡活动,至今仍不清楚。我们对12名健康参与者在休息时进行腕伸肌刺激时,NMES参数对大脑振荡活动的影响进行了量化。研究包括三种不同的NMES强度,两种低于个体运动阈值,一种高于个体运动阈值,刺激频率固定为35Hz,脉冲宽度固定为300μs。首先,我们有效地从EEG记录中去除了刺激伪迹。其次,我们分析了幅度和剂量对感觉运动振荡活动的影响。一方面,我们观察到大脑活动存在显著的NMES强度依赖性调制,这证明了传入受体募集的直接作用。另一方面,我们描述了随着时间推移,NMES强度依赖性剂量效应在感觉运动活动调制方面的显著作用,低于运动阈值的强度会导致皮质抑制,而高于运动阈值的强度会导致皮质易化。我们的结果突出了NMES强度和剂量的相关性,并表明这些参数可以影响从肌肉到大脑的感觉运动通路的募集,在基于NMES的新型神经调节干预设计中应仔细考虑这一点。