Suppr超能文献

DeepAMO:一种用于对体图像执行视觉检测任务的多层、多视角拟人化模型观察者。

DeepAMO: a multi-slice, multi-view anthropomorphic model observer for visual detection tasks performed on volume images.

作者信息

Li Ye, Chen Junyu, Brown Justin L, Treves S Ted, Cao Xinhua, Fahey Frederic H, Sgouros George, Bolch Wesley E, Frey Eric C

机构信息

Johns Hopkins University, Whiting School of Engineering, Department of Electrical and Computer Engineering, Baltimore, Maryland, United States.

Johns Hopkins University, School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, United States.

出版信息

J Med Imaging (Bellingham). 2021 Jul;8(4):041204. doi: 10.1117/1.JMI.8.4.041204. Epub 2021 Jan 28.

Abstract

We propose a deep learning-based anthropomorphic model observer (DeepAMO) for image quality evaluation of multi-orientation, multi-slice image sets with respect to a clinically realistic 3D defect detection task. The DeepAMO is developed based on a hypothetical model of the decision process of a human reader performing a detection task using a 3D volume. The DeepAMO is comprised of three sequential stages: defect segmentation, defect confirmation (DC), and rating value inference. The input to the DeepAMO is a composite image, typical of that used to view 3D volumes in clinical practice. The output is a rating value designed to reproduce a human observer's defect detection performance. In stages 2 and 3, we propose: (1) a projection-based DC block that confirms defect presence in two 2D orthogonal orientations and (2) a calibration method that "learns" the mapping from the features of stage 2 to the distribution of observer ratings from the human observer rating data (thus modeling inter- or intraobserver variability) using a mixture density network. We implemented and evaluated the DeepAMO in the context of -DMSA SPECT imaging. A human observer study was conducted, with two medical imaging physics graduate students serving as observers. A -fold cross-validation experiment was conducted to test the statistical equivalence in defect detection performance between the DeepAMO and the human observer. We also compared the performance of the DeepAMO to an unoptimized implementation of a scanning linear discriminant observer (SLDO). The results show that the DeepAMO's and human observer's performances on unseen images were statistically equivalent with a margin of difference ( ) of 0.0426 at , using 288 training images. A limited implementation of an SLDO had a substantially higher AUC (0.99) compared to the DeepAMO and human observer. The results show that the DeepAMO has the potential to reproduce the absolute performance, and not just the relative ranking of human observers on a clinically realistic defect detection task, and that building conceptual components of the human reading process into deep learning-based models can allow training of these models in settings where limited training images are available.

摘要

我们提出了一种基于深度学习的拟人化模型观察者(DeepAMO),用于针对临床现实的三维缺陷检测任务,对多方向、多层图像集的图像质量进行评估。DeepAMO是基于人类读者使用三维容积执行检测任务的决策过程的假设模型开发的。DeepAMO由三个连续阶段组成:缺陷分割、缺陷确认(DC)和评级值推断。DeepAMO的输入是一幅合成图像,这是临床实践中用于查看三维容积的典型图像。输出是一个旨在重现人类观察者缺陷检测性能的评级值。在第2和第3阶段,我们提出:(1)一种基于投影的DC模块,用于在两个二维正交方向上确认缺陷的存在;(2)一种校准方法,使用混合密度网络从人类观察者评级数据“学习”从第2阶段的特征到观察者评级分布的映射(从而对观察者间或观察者内的变异性进行建模)。我们在-DMSA SPECT成像的背景下实现并评估了DeepAMO。进行了一项人类观察者研究,两名医学成像物理研究生作为观察者。进行了一次折交叉验证实验,以测试DeepAMO与人类观察者在缺陷检测性能方面的统计等效性。我们还将DeepAMO的性能与扫描线性判别观察者(SLDO)的未优化实现进行了比较。结果表明,使用288幅训练图像时,在时,DeepAMO和人类观察者在未见图像上的性能在统计学上等效,差异幅度()为0.0426。与DeepAMO和人类观察者相比,SLDO的有限实现具有显著更高的AUC(0.99)。结果表明,DeepAMO有潜力重现绝对性能,而不仅仅是人类观察者在临床现实缺陷检测任务中的相对排名,并且将人类阅读过程的概念组件构建到基于深度学习的模型中,可以在可用训练图像有限的环境中对这些模型进行训练。

相似文献

1
DeepAMO: a multi-slice, multi-view anthropomorphic model observer for visual detection tasks performed on volume images.
J Med Imaging (Bellingham). 2021 Jul;8(4):041204. doi: 10.1117/1.JMI.8.4.041204. Epub 2021 Jan 28.
3
Visual-search observers for assessing tomographic x-ray image quality.
Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.
4
Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies.
IEEE Trans Nucl Sci. 2016 Jun;63(3):1426-1434. doi: 10.1109/TNS.2016.2542042. Epub 2016 May 19.
5
CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study.
Med Phys. 2018 Oct;45(10):4439-4447. doi: 10.1002/mp.13151. Epub 2018 Sep 18.
6
DEMIST: A Deep-Learning-Based Detection-Task-Specific Denoising Approach for Myocardial Perfusion SPECT.
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):439-450. doi: 10.1109/trpms.2024.3379215. Epub 2024 Mar 25.
8
4D numerical observer for lesion detection in respiratory-gated PET.
Med Phys. 2014 Oct;41(10):102504. doi: 10.1118/1.4895975.
9
Numerical Surrogates for Human Observers in Myocardial Motion Evaluation From SPECT Images.
IEEE Trans Med Imaging. 2014 Jan;33(1):38-47. doi: 10.1109/TMI.2013.2279517. Epub 2013 Aug 22.

引用本文的文献

1
A deep learning anthropomorphic model observer for a detection task in PET.
Med Phys. 2024 Oct;51(10):7093-7107. doi: 10.1002/mp.17303. Epub 2024 Jul 15.

本文引用的文献

5
Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies.
IEEE Trans Nucl Sci. 2016 Jun;63(3):1426-1434. doi: 10.1109/TNS.2016.2542042. Epub 2016 May 19.
6
A risk index for pediatric patients undergoing diagnostic imaging with (99m)Tc-dimercaptosuccinic acid that accounts for body habitus.
Phys Med Biol. 2016 Mar 21;61(6):2319-32. doi: 10.1088/0031-9155/61/6/2319. Epub 2016 Mar 1.
7
Task-based measures of image quality and their relation to radiation dose and patient risk.
Phys Med Biol. 2015 Jan 21;60(2):R1-75. doi: 10.1088/0031-9155/60/2/R1. Epub 2015 Jan 7.
8
Model observers in medical imaging research.
Theranostics. 2013 Oct 4;3(10):774-86. doi: 10.7150/thno.5138.
9
Objective assessment of image quality VI: imaging in radiation therapy.
Phys Med Biol. 2013 Nov 21;58(22):8197-213. doi: 10.1088/0031-9155/58/22/8197.
10
Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection.
Phys Med Biol. 2013 Oct 21;58(20):7159-82. doi: 10.1088/0031-9155/58/20/7159. Epub 2013 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验