Suppr超能文献

基于体重给药的影响因素的投影图像数据库研究:在儿科肾 SPECT 中的应用。

A projection image database to investigate factors affecting image quality in weight-based dosing: application to pediatric renal SPECT.

机构信息

Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America. The Russell H Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, United States of America.

出版信息

Phys Med Biol. 2018 Jul 9;63(14):145004. doi: 10.1088/1361-6560/aacbf0.

Abstract

Balancing the tradeoff between radiation dose, acquisition duration and diagnostic image quality is essential for medical imaging modalities involving ionizing radiation. Lower administered activities to the patient can reduce absorbed dose, but can result in reduced diagnostic image quality or require longer acquisition durations. In pediatric nuclear medicine, it is desirable to use the lowest amount of administered radiopharmaceutical activity and the shortest acquisition duration that gives sufficient image quality for clinical diagnosis. However, diagnostic image quality is a complex function of patient factors including body morphometry. In this study, we present a digital population of 90 computational anatomic phantoms that model realistic variations in body morphometry and internal anatomy. These phantoms were used to generate a large database of projection images modeling pediatric SPECT imaging using a Tc-DMSA tracer. We used an analytic projection code that models attenuation, spatially varying collimator-detector response, and object-dependent scatter to generate the projections. The projections for each organ were generated separately and can be subsequently scaled by parameters extracted from a pharmacokinetics model to simulate realistic tracer biodistribution, including variations in uptake, inside each relevant organ or tissue structure for a given tracer. Noise-free projection images can be obtained by summing these individual organ projections and scaling by the system sensitivity and acquisition duration. We applied this database in the context of Tc-DMSA renal SPECT, the most common nuclear medicine imaging procedure in pediatric patients. Organ uptake fractions based on literature values and patient studies were used. Patient SPECT images were used to verify that the sum of counts in the simulated projection images was clinically realistic. For each phantom, 384 uptake realizations, modeling random variations in the uptakes of organs of interest, were generated, producing 34 560 noise-free projection datasets (384 uptake realizations times 90 phantoms). Noisy images modeling various count levels (corresponding to different products of acquisition duration and administered activity) were generated by appropriately scaling these images and simulating Poisson noise. Acquisition duration was fixed; six count levels were simulated corresponding to projection images acquired using 25%, 50%, 75%, 100%, 125%, and 150% of the original weight-based administrated activity as computed using the North American Guidelines (Gelfand et al 2011 J. Nucl. Med. 52 318-22). Combined, a total number of 207 360 noisy projection images were generated, creating a realistic projection database for use in renal pediatric SPECT imaging research. The phantoms and projection datasets were used to calculate three surrogate indices for factors affecting image quality: renal count density, average radius of rotation, and scatter-to-primary ratio. Differences in these indices were seen across the phantoms for dosing based on current guidelines, and especially for the phantom modeling the newborn. We also performed an image quality study using an anthropomorphic model observer that demonstrates that the weight-based dose scaling does not equalize image quality as measured by the area under the receiver-operating characteristics curve. These studies suggest that a dosing procedure beyond weight-based scaling of administered activities is required to equalize image quality in pediatric renal SPECT.

摘要

在涉及电离辐射的医学成像方式中,平衡辐射剂量、采集时间和诊断图像质量之间的权衡至关重要。降低给予患者的活动量可以减少吸收剂量,但可能导致诊断图像质量降低或需要更长的采集时间。在儿科核医学中,理想情况下使用最低的放射性药物活动量和最短的采集时间,以获得足够的临床诊断图像质量。然而,诊断图像质量是一个复杂的函数,受患者因素的影响,包括身体形态学。在这项研究中,我们提出了一个由 90 个计算解剖体模组成的数字群体,这些体模模拟了身体形态学和内部解剖学的真实变化。这些体模用于生成一个大型数据库,该数据库使用 Tc-DMSA 示踪剂对儿科 SPECT 成像进行建模。我们使用了一种分析投影代码,该代码可以模拟衰减、空间变化的准直器-探测器响应以及与物体相关的散射,以生成投影。为每个器官生成单独的投影,并可以根据从药代动力学模型中提取的参数对其进行缩放,以模拟真实的示踪剂生物分布,包括在给定示踪剂的每个相关器官或组织结构内的摄取变化。通过将这些单独的器官投影相加并乘以系统灵敏度和采集时间,可以获得无噪声的投影图像。我们将该数据库应用于 Tc-DMSA 肾 SPECT 的背景下,这是儿科患者最常见的核医学成像程序。使用基于文献值和患者研究的器官摄取分数。使用患者 SPECT 图像来验证模拟投影图像中的计数总和在临床上是现实的。对于每个体模,生成 384 个摄取实现,模拟感兴趣器官摄取的随机变化,产生 34560 个无噪声投影数据集(384 个摄取实现乘以 90 个体模)。通过适当缩放这些图像并模拟泊松噪声,可以生成模拟各种计数水平的噪声图像(对应于采集时间和给予活动的不同乘积)。采集时间固定;模拟了六个计数水平,对应于使用原始基于体重的给予活动的 25%、50%、75%、100%、125%和 150%计算的投影图像,如北美指南(Gelfand 等人,2011 年 J. Nucl. Med. 52 318-22)。总共生成了 207360 个噪声投影图像,为儿科肾 SPECT 成像研究创建了一个真实的投影数据库。这些体模和投影数据集用于计算三个影响图像质量的因素的替代指标:肾计数密度、平均旋转半径和散射与初级比。基于当前指南进行给药时,在体模之间观察到这些指标的差异,尤其是对于模拟新生儿的体模。我们还使用人体模型观察者进行了一项图像质量研究,该研究表明,基于体重的剂量缩放并不能像通过接收者操作特性曲线下的面积来衡量的那样使图像质量均等化。这些研究表明,需要超越基于体重的放射性药物活动量给药的程序来使儿科肾 SPECT 的图像质量均等化。

相似文献

2
Girth-based administered activity for pediatric Tc-DMSA SPECT.基于腹围的小儿Tc-DMSA SPECT给药活动。
Med Phys. 2024 Feb;51(2):1019-1033. doi: 10.1002/mp.16602. Epub 2023 Jul 21.

引用本文的文献

2
Girth-based administered activity for pediatric Tc-DMSA SPECT.基于腹围的小儿Tc-DMSA SPECT给药活动。
Med Phys. 2024 Feb;51(2):1019-1033. doi: 10.1002/mp.16602. Epub 2023 Jul 21.

本文引用的文献

10
The new EANM paediatric dosage card.欧洲核医学协会新的儿科剂量卡。
Eur J Nucl Med Mol Imaging. 2007 May;34(5):796-798. doi: 10.1007/s00259-007-0370-0. Epub 2007 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验