Suppr超能文献

对P 3D CSI数据进行主成分分析(PCA)去噪和维纳反卷积,以提高有效信噪比并改善点扩散函数。

PCA denoising and Wiener deconvolution of P 3D CSI data to enhance effective SNR and improve point spread function.

作者信息

Froeling Martijn, Prompers Jeanine J, Klomp Dennis W J, van der Velden Tijl A

机构信息

Department of Radiology, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Magn Reson Med. 2021 Jun;85(6):2992-3009. doi: 10.1002/mrm.28654. Epub 2021 Feb 1.

Abstract

PURPOSE

This study evaluates the performance of 2 processing methods, that is, principal component analysis-based denoising and Wiener deconvolution, to enhance the quality of phosphorus 3D chemical shift imaging data.

METHODS

Principal component analysis-based denoising increases the SNR while maintaining spectral information. Wiener deconvolution reduces the FWHM of the voxel point spread function, which is increased by Hamming filtering or Hamming-weighted acquisition. The proposed methods are evaluated using simulated and in vivo 3D phosphorus chemical shift imaging data by 1) visual inspection of the spatial signal distribution; 2) SNR calculation of the PCr peak; and 3) fitting of metabolite basis functions.

RESULTS

With the optimal order of processing steps, we show that the effective SNR of in vivo phosphorus 3D chemical shift imaging data can be increased. In simulations, we show we can preserve phosphorus-containing metabolite peaks that had an SNR < 1 before denoising. Furthermore, using Wiener deconvolution, we were able to reduce the FWHM of the voxel point spread function with only partially reintroducing Gibb-ringing artifacts while maintaining the SNR. After data processing, fitting of the phosphorus-containing metabolite signals improved.

CONCLUSION

In this study, we have shown that principal component analysis-based denoising in combination with regularized Wiener deconvolution allows increasing the effective spectral SNR of in vivo phosphorus 3D chemical shift imaging data, with reduction of the FWHM of the voxel point spread function. Processing increased the effective SNR by at least threefold compared to Hamming weighted acquired data and minimized voxel bleeding. With these methods, fitting of metabolite amplitudes became more robust with decreased fitting residuals.

摘要

目的

本研究评估两种处理方法,即基于主成分分析的去噪和维纳反卷积,以提高磷3D化学位移成像数据的质量。

方法

基于主成分分析的去噪在保持光谱信息的同时提高信噪比。维纳反卷积减少了体素点扩散函数的半高宽,该函数因汉明滤波或汉明加权采集而增加。通过以下方式使用模拟和体内3D磷化学位移成像数据评估所提出的方法:1)目视检查空间信号分布;2)计算磷酸肌酸峰的信噪比;3)拟合代谢物基函数。

结果

通过优化处理步骤的顺序,我们表明可以提高体内磷3D化学位移成像数据的有效信噪比。在模拟中,我们表明可以保留去噪前信噪比<1的含磷代谢物峰。此外,使用维纳反卷积,我们能够在仅部分重新引入吉布斯振铃伪影的同时减少体素点扩散函数的半高宽,同时保持信噪比。数据处理后,含磷代谢物信号的拟合得到改善。

结论

在本研究中,我们表明基于主成分分析的去噪与正则化维纳反卷积相结合,可以提高体内磷3D化学位移成像数据的有效光谱信噪比,同时减少体素点扩散函数的半高宽。与汉明加权采集的数据相比,处理使有效信噪比至少提高了三倍,并使体素出血最小化。使用这些方法,代谢物振幅的拟合变得更加稳健,拟合残差减小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bbb/7986807/28c402476e76/MRM-85-2992-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验