Suppr超能文献

使用主成分的统计选择对磁共振波谱成像数据进行去噪

Denoising of MR spectroscopic imaging data using statistical selection of principal components.

作者信息

Abdoli Abas, Stoyanova Radka, Maudsley Andrew A

机构信息

Department of Radiology, University of Miami School of Medicine, 1150 NW 14th St, Suite 713, Miami, FL, 33136, USA.

Department Radiation Oncology, University of Miami School of Medicine, Miami, FL, USA.

出版信息

MAGMA. 2016 Dec;29(6):811-822. doi: 10.1007/s10334-016-0566-z. Epub 2016 Jun 3.

Abstract

OBJECTIVES

To evaluate a new denoising method for MR spectroscopic imaging (MRSI) data based on selection of signal-related principal components (SSPCs) from principal components analysis (PCA).

MATERIALS AND METHODS

A PCA-based method was implemented for selection of signal-related PCs and denoising achieved by reconstructing the original data set utilizing only these PCs. Performance was evaluated using simulated MRSI data and two volumetric in vivo MRSIs of human brain, from a normal subject and a patient with a brain tumor, using variable signal-to-noise ratios (SNRs), metabolite peak areas, Cramer-Rao bounds (CRBs) of fitted metabolite peak areas and metabolite linewidth.

RESULTS

In simulated data, SSPC determined the correct number of signal-related PCs. For in vivo studies, the SSPC denoising resulted in improved SNRs and reduced metabolite quantification uncertainty compared to the original data and two other methods for denoising. The method also performed very well in preserving the spectral linewidth and peak areas. However, this method performs better for regions that have larger numbers of similar spectra.

CONCLUSION

The proposed SSPC denoising improved the SNR and metabolite quantification uncertainty in MRSI, with minimal compromise of the spectral information, and can result in increased accuracy.

摘要

目的

基于主成分分析(PCA)中信号相关主成分(SSPCs)的选择,评估一种用于磁共振波谱成像(MRSI)数据的新去噪方法。

材料与方法

实施基于PCA的方法来选择信号相关主成分,并通过仅利用这些主成分重建原始数据集来实现去噪。使用模拟的MRSI数据以及来自一名正常受试者和一名脑肿瘤患者的两份人脑体素内MRSI数据,采用可变信噪比(SNR)、代谢物峰面积、拟合代谢物峰面积的克拉美 - 罗界(CRB)和代谢物线宽来评估性能。

结果

在模拟数据中,SSPC确定了正确数量的信号相关主成分。对于体内研究,与原始数据和其他两种去噪方法相比,SSPC去噪提高了SNR并降低了代谢物定量的不确定性。该方法在保留谱线宽和峰面积方面也表现出色。然而,该方法对于具有大量相似谱的区域表现更好。

结论

所提出的SSPC去噪提高了MRSI中的SNR和代谢物定量不确定性,对光谱信息的损害最小,并可提高准确性。

相似文献

1
Denoising of MR spectroscopic imaging data using statistical selection of principal components.
MAGMA. 2016 Dec;29(6):811-822. doi: 10.1007/s10334-016-0566-z. Epub 2016 Jun 3.
2
Effects of apodization smoothing and denoising on spectral fitting.
Magn Reson Imaging. 2020 Jul;70:108-114. doi: 10.1016/j.mri.2020.04.013. Epub 2020 Apr 22.
3
Uncertainty in denoising of MRSI using low-rank methods.
Magn Reson Med. 2022 Feb;87(2):574-588. doi: 10.1002/mrm.29018. Epub 2021 Sep 21.
4
Denoising MR spectroscopic imaging data with low-rank approximations.
IEEE Trans Biomed Eng. 2013 Jan;60(1):78-89. doi: 10.1109/TBME.2012.2223466. Epub 2012 Oct 9.
5
Noise-reduction techniques for H-FID-MRSI at 14.1 T: Monte Carlo validation and in vivo application.
NMR Biomed. 2024 Nov;37(11):e5211. doi: 10.1002/nbm.5211. Epub 2024 Jul 23.
6
Improved Low-Rank Filtering of Magnetic Resonance Spectroscopic Imaging Data Corrupted by Noise and B₀ Field Inhomogeneity.
IEEE Trans Biomed Eng. 2016 Apr;63(4):841-9. doi: 10.1109/TBME.2015.2476499. Epub 2015 Sep 3.
7
Denoising complex-valued diffusion MR images using a two-step, nonlocal principal component analysis approach.
Magn Reson Med. 2025 Jun;93(6):2473-2487. doi: 10.1002/mrm.30502. Epub 2025 Mar 13.

引用本文的文献

1
Denoising of Fluorescence Lifetime Imaging Data via Principal Component Analysis.
Res Sq. 2025 Jul 29:rs.3.rs-7143126. doi: 10.21203/rs.3.rs-7143126/v1.
2
Enhanced fluorescence lifetime imaging microscopy denoising via principal component analysis.
bioRxiv. 2025 Mar 2:2025.02.26.640419. doi: 10.1101/2025.02.26.640419.
3
3D deuterium metabolic imaging (DMI) of the human liver at 7 T using low-rank and subspace model-based reconstruction.
Magn Reson Med. 2025 May;93(5):1860-1873. doi: 10.1002/mrm.30395. Epub 2024 Dec 22.
4
Joint learning of nonlinear representation and projection for fast constrained MRSI reconstruction.
Magn Reson Med. 2025 Feb;93(2):455-469. doi: 10.1002/mrm.30276. Epub 2024 Sep 4.
6
Developments in proton MR spectroscopic imaging of prostate cancer.
MAGMA. 2022 Aug;35(4):645-665. doi: 10.1007/s10334-022-01011-9. Epub 2022 Apr 20.
7
Uncertainty in denoising of MRSI using low-rank methods.
Magn Reson Med. 2022 Feb;87(2):574-588. doi: 10.1002/mrm.29018. Epub 2021 Sep 21.
9
PCA denoising and Wiener deconvolution of P 3D CSI data to enhance effective SNR and improve point spread function.
Magn Reson Med. 2021 Jun;85(6):2992-3009. doi: 10.1002/mrm.28654. Epub 2021 Feb 1.
10
Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4309. doi: 10.1002/nbm.4309. Epub 2020 Apr 29.

本文引用的文献

1
Phased-array combination for MR spectroscopic imaging using a water reference.
Magn Reson Med. 2016 Sep;76(3):733-41. doi: 10.1002/mrm.25992. Epub 2015 Sep 28.
2
Multivendor implementation and comparison of volumetric whole-brain echo-planar MR spectroscopic imaging.
Magn Reson Med. 2015 Nov;74(5):1209-20. doi: 10.1002/mrm.25510. Epub 2014 Oct 29.
3
Hybrid sparse regularization for magnetic resonance spectroscopy.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6768-71. doi: 10.1109/EMBC.2013.6611110.
4
Data-driven MRSI spectral localization via low-rank component analysis.
IEEE Trans Med Imaging. 2013 Oct;32(10):1853-63. doi: 10.1109/TMI.2013.2266259. Epub 2013 Jun 4.
5
Denoising diffusion-weighted magnitude MR images using rank and edge constraints.
Magn Reson Med. 2014 Mar;71(3):1272-84. doi: 10.1002/mrm.24728.
6
Denoising MR spectroscopic imaging data with low-rank approximations.
IEEE Trans Biomed Eng. 2013 Jan;60(1):78-89. doi: 10.1109/TBME.2012.2223466. Epub 2012 Oct 9.
7
Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy.
Epilepsy Res. 2010 Feb;88(2-3):127-38. doi: 10.1016/j.eplepsyres.2009.10.009. Epub 2009 Nov 17.
9
Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging.
NMR Biomed. 2006 Jun;19(4):492-503. doi: 10.1002/nbm.1025.
10
New denoising scheme for magnetic resonance spectroscopy signals.
IEEE Trans Med Imaging. 2005 Jun;24(6):809-16. doi: 10.1109/TMI.2004.828350.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验