Suppr超能文献

雄激素受体靶向化合物联合治疗的计算评估。

Computational Assessment of Combination Therapy of Androgen Receptor-Targeting Compounds.

机构信息

Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.

出版信息

J Chem Inf Model. 2021 Feb 22;61(2):1001-1009. doi: 10.1021/acs.jcim.0c01194. Epub 2021 Feb 1.

Abstract

The ligand-binding domain of the androgen receptor (AR) is a target for drugs against prostate cancer and offers three distinct binding sites for small molecules. Drugs acting on the orthosteric hormone binding site suffer from resistance mechanisms that can, in the worst case, reverse their therapeutic effect. While many allosteric ligands targeting either the activation function-2 (AF-2) or the binding function-3 (BF-3) have been reported, their potential for simultaneous administration with currently prescribed antiandrogens was disregarded. Here, we report results of 60 μs molecular dynamics simulations to investigate combinations of orthosteric and allosteric AR antagonists. Our results suggest BF-3 inhibitors to be more suitable in combination with classical antiandrogens as opposed to AF-2 inhibitors based on binding free energies and binding modes. As a mechanistic explanation for these observations, we deduced a structural adaptation of helix-12 involved in the formation of the AF-2 site by classical AR antagonists. Additionally, the changes were accompanied by an expansion of the orthosteric binding site. Considering our predictions, the selective combination of AR-targeting compounds may improve the treatment of prostate cancer.

摘要

雄激素受体(AR)的配体结合域是治疗前列腺癌药物的靶点,它为小分子提供了三个独特的结合位点。作用于正位激素结合位点的药物会产生耐药机制,在最坏的情况下会逆转其治疗效果。虽然已经报道了许多针对激活功能-2(AF-2)或结合功能-3(BF-3)的别构配体,但它们与目前规定的抗雄激素同时使用的潜力被忽视了。在这里,我们报告了 60μs 分子动力学模拟的结果,以研究正位和别构 AR 拮抗剂的组合。我们的结果表明,基于结合自由能和结合模式,BF-3 抑制剂与经典抗雄激素联合使用比 AF-2 抑制剂更合适。作为对这些观察结果的机制解释,我们推断出经典 AR 拮抗剂参与 AF-2 位点形成的螺旋-12 的结构适应性。此外,这些变化伴随着正位结合位点的扩大。考虑到我们的预测,AR 靶向化合物的选择性组合可能会改善前列腺癌的治疗效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验