Stefaniak Filip, Bujnicki Janusz M
Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland.
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
PLoS Comput Biol. 2021 Feb 1;17(2):e1008309. doi: 10.1371/journal.pcbi.1008309. eCollection 2021 Feb.
RNA is considered as an attractive target for new small molecule drugs. Designing active compounds can be facilitated by computational modeling. Most of the available tools developed for these prediction purposes, such as molecular docking or scoring functions, are parametrized for protein targets. The performance of these methods, when applied to RNA-ligand systems, is insufficient. To overcome these problems, we developed AnnapuRNA, a new knowledge-based scoring function designed to evaluate RNA-ligand complex structures, generated by any computational docking method. We also evaluated three main factors that may influence the structure prediction, i.e., the starting conformer of a ligand, the docking program, and the scoring function used. We applied the AnnapuRNA method for a post-hoc study of the recently published structures of the FMN riboswitch. Software is available at https://github.com/filipspl/AnnapuRNA.
RNA被认为是新型小分子药物的一个有吸引力的靶点。计算建模有助于设计活性化合物。为这些预测目的开发的大多数现有工具,如分子对接或评分函数,都是针对蛋白质靶点进行参数化的。当应用于RNA-配体系统时,这些方法的性能不足。为了克服这些问题,我们开发了AnnapuRNA,这是一种基于知识的新评分函数,旨在评估由任何计算对接方法生成的RNA-配体复合物结构。我们还评估了可能影响结构预测的三个主要因素,即配体的起始构象、对接程序和使用的评分函数。我们将AnnapuRNA方法应用于对最近发表的FMN核糖开关结构的事后研究。软件可在https://github.com/filipspl/AnnapuRNA获取。