Suppr超能文献

基于实验数据的 RNA 三维结构的计算建模。

Computational modeling of RNA 3D structure based on experimental data.

机构信息

Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland.

Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, Warsaw PL-02-109, Poland

出版信息

Biosci Rep. 2019 Feb 8;39(2). doi: 10.1042/BSR20180430. Print 2019 Feb 28.

Abstract

RNA molecules are master regulators of cells. They are involved in a variety of molecular processes: they transmit genetic information, sense cellular signals and communicate responses, and even catalyze chemical reactions. As in the case of proteins, RNA function is dictated by its structure and by its ability to adopt different conformations, which in turn is encoded in the sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore the majority of known RNAs remain structurally uncharacterized. To address this problem, predictive computational methods were developed based on the accumulated knowledge of RNA structures determined so far, the physical basis of the RNA folding, and taking into account evolutionary considerations, such as conservation of functionally important motifs. However, all theoretical methods suffer from various limitations, and they are generally unable to accurately predict structures for RNA sequences longer than 100-nt residues unless aided by additional experimental data. In this article, we review experimental methods that can generate data usable by computational methods, as well as computational approaches for RNA structure prediction that can utilize data from experimental analyses. We outline methods and data types that can be potentially useful for RNA 3D structure modeling but are not commonly used by the existing software, suggesting directions for future development.

摘要

RNA 分子是细胞的主要调控因子。它们参与各种分子过程:传递遗传信息、感知细胞信号并传递反应,甚至催化化学反应。与蛋白质一样,RNA 的功能取决于其结构及其能够采用不同构象的能力,而这又编码在序列中。高分辨率 RNA 结构的实验测定既费力又困难,因此大多数已知的 RNA 仍然没有结构特征。为了解决这个问题,基于迄今为止确定的 RNA 结构的积累知识、RNA 折叠的物理基础,并考虑到进化方面的考虑因素,例如功能重要基序的保守性,开发了预测性计算方法。然而,所有理论方法都存在各种限制,除非借助额外的实验数据,否则它们通常无法准确预测长度超过 100-nt 残基的 RNA 序列的结构。在本文中,我们回顾了可用于计算方法的实验方法,以及可利用实验分析数据的 RNA 结构预测的计算方法。我们概述了可能对 RNA 三维结构建模有用但现有软件不常用的数据类型和方法,为未来的发展方向提出了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c609/6367127/10d778248a07/bsr-39-bsr20180430-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验