Suppr超能文献

使用 BEAST 估计 HIV-1 感染时间的影响因素。

Factors influencing estimates of HIV-1 infection timing using BEAST.

机构信息

U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.

Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2021 Feb 1;17(2):e1008537. doi: 10.1371/journal.pcbi.1008537. eCollection 2021 Feb.

Abstract

While large datasets of HIV-1 sequences are increasingly being generated, many studies rely on a single gene or fragment of the genome and few comparative studies across genes have been done. We performed genome-based and gene-specific Bayesian phylogenetic analyses to investigate how certain factors impact estimates of the infection dates in an acute HIV-1 infection cohort, RV217. In this cohort, HIV-1 diagnosis corresponded to the first RNA positive test and occurred a median of four days after the last negative test, allowing us to compare timing estimates using BEAST to a narrow window of infection. We analyzed HIV-1 sequences sampled one week, one month and six months after HIV-1 diagnosis in 39 individuals. We found that shared diversity and temporal signal was limited in acute infection, and insufficient to allow timing inferences in the shortest HIV-1 genes, thus dated phylogenies were primarily analyzed for env, gag, pol and near full-length genomes. There was no one best-fitting model across participants and genes, though relaxed molecular clocks (73% of best-fitting models) and the Bayesian skyline (49%) tended to be favored. For infections with single founders, the infection date was estimated to be around one week pre-diagnosis for env (IQR: 3-9 days) and gag (IQR: 5-9 days), whilst the genome placed it at a median of 10 days (IQR: 4-19). Multiply-founded infections proved problematic to date. Our ability to compare timing inferences to precise estimates of HIV-1 infection (within a week) highlights that molecular dating methods can be applied to within-host datasets from early infection. Nonetheless, our results also suggest caution when using uniform clock and population models or short genes with limited information content.

摘要

虽然越来越多的 HIV-1 序列大型数据集正在生成,但许多研究依赖于单个基因或基因组的片段,并且很少有跨基因的比较研究。我们进行了基于基因组和基因特异性的贝叶斯系统发育分析,以研究某些因素如何影响急性 HIV-1 感染队列 RV217 中感染日期的估计。在该队列中,HIV-1 的诊断与第一次 RNA 阳性测试相对应,并且发生在最后一次阴性测试后中位数为四天,这使我们能够使用 BEAST 比较时间估计值与感染的狭窄窗口。我们分析了 39 个人在 HIV-1 诊断后一周、一个月和六个月时采集的 HIV-1 序列。我们发现,急性感染中共享的多样性和时间信号有限,不足以允许对最短的 HIV-1 基因进行时间推断,因此主要对 env、gag、pol 和近全长基因组进行了日期推断的系统发育分析。尽管放松的分子钟(最佳拟合模型的 73%)和贝叶斯天空线(49%)倾向于受到青睐,但并非所有参与者和基因都存在最佳拟合模型。对于具有单一创始者的感染,env(IQR:3-9 天)和 gag(IQR:5-9 天)的感染日期估计在诊断前一周左右,而基因组中位数为 10 天(IQR:4-19)。多重创始者感染难以确定日期。我们将时间推断与 HIV-1 感染的精确估计(在一周内)进行比较的能力突出了分子定年方法可应用于早期感染的宿主内数据集。尽管如此,我们的结果还表明,在使用统一的时钟和群体模型或具有有限信息量的短基因时应谨慎。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验