Cao Pinqiang, Sheng Jianlong, Wu Jianyang, Ning Fulong
School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
Department of Physics, Jiujiang Research Institute, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
Phys Chem Chem Phys. 2021 Feb 12;23(5):3615-3626. doi: 10.1039/d0cp05896c.
Mechanical creep behaviors of natural gas hydrates are of importance for understanding the mechanical instability of gas hydrate-bearing sediments on Earth. Limited by the experimental challenges, intrinsic creep mechanisms of nanocrystalline methane hydrates remain largely unknown yet at the molecular scale. Herein, using large-scale molecular dynamics simulations, mechanical creep behaviors of nanocrystalline methane hydrates are investigated. It is revealed that mechanical creep responses are greatly dictated by internal microstructures of crystalline grain size and external conditions of temperature and static stress. Interestingly, a long steady-state creep is observed in nanocrystalline methane hydrates, which can be described by a modified constitutive Bird-Dorn-Mukherjee model. Microstructural analysis shows that deformations of crystalline grains, grain boundary diffusion and grain boundary sliding collectively govern the mechanical creep behaviors of nanocrystalline methane hydrates. Furthermore, structural transformation also appears to be important in their mechanical creep behaviors. This study provides new insights into understanding the mechanical creep scenarios of gas hydrates.
天然气水合物的力学蠕变行为对于理解地球上含天然气水合物沉积物的力学不稳定性具有重要意义。受实验挑战的限制,纳米晶甲烷水合物的本征蠕变机制在分子尺度上仍 largely未知。在此,利用大规模分子动力学模拟,研究了纳米晶甲烷水合物的力学蠕变行为。结果表明,力学蠕变响应很大程度上由晶粒尺寸的内部微观结构以及温度和静应力的外部条件决定。有趣的是,在纳米晶甲烷水合物中观察到了长时间的稳态蠕变,这可以用修正的 Bird-Dorn-Mukherjee 本构模型来描述。微观结构分析表明,晶粒变形、晶界扩散和晶界滑动共同控制着纳米晶甲烷水合物的力学蠕变行为。此外,结构转变在其力学蠕变行为中似乎也很重要。这项研究为理解天然气水合物的力学蠕变情况提供了新的见解。