Cao Pinqiang, Li Tianshu, Ning Fulong, Wu Jianyang
Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China.
Department of Civil & Environmental Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
ACS Appl Mater Interfaces. 2021 Sep 29;13(38):46043-46054. doi: 10.1021/acsami.1c08114. Epub 2021 Sep 14.
Massive methane hydrates occur on sediment matrices in nature. Therefore, sediment-based methane hydrate systems play an essential role in the society and hydrate community, including energy resources, global climate changes, and geohazards. However, a fundamental understanding of mechanical properties of methane hydrate-mineral interface systems is largely limited due to insufficient experimental techniques. Herein, by using large-scale molecular simulations, we show that the mechanical properties of methane hydrate-mineral (silica, kaolinite, and Wyoming-type montmorillonite) interface systems are strongly dictated by the chemical components of sedimentary minerals that determine interfacial microstructures between methane hydrates and minerals. The tensile strengths of hydrate-mineral systems are found to decrease following the order of Wyoming-type montmorillonite- > silica- > kaolinite-based methane hydrate systems, all of which show a brittle failure at the interface between methane hydrates and minerals under tension. In contrast, upon compression, methane hydrates decompose into water and methane molecules, resulting from a large strain-induced mechanical instability. In particular, the failure of Wyoming-type montmorillonite-based methane hydrate systems under compression is characterized by a sudden decrease in the compressive stress at a strain of around 0.23, distinguishing it from those of silica- and kaolinite-based methane hydrate systems under compression. Our findings thus provide a molecular insight into the potential mechanisms of mechanical instability of gas hydrate-bearing sediment systems on Earth.
自然界中大量的甲烷水合物存在于沉积物基质中。因此,基于沉积物的甲烷水合物系统在社会和水合物领域发挥着重要作用,包括能源资源、全球气候变化和地质灾害等方面。然而,由于实验技术不足,对甲烷水合物 - 矿物界面系统力学性质的基本认识在很大程度上受到限制。在此,通过大规模分子模拟,我们表明甲烷水合物 - 矿物(二氧化硅、高岭土和怀俄明型蒙脱石)界面系统的力学性质强烈地由沉积矿物的化学成分决定,这些化学成分决定了甲烷水合物与矿物之间的界面微观结构。发现水合物 - 矿物系统的拉伸强度按照怀俄明型蒙脱石基甲烷水合物系统 > 二氧化硅基甲烷水合物系统 > 高岭土基甲烷水合物系统的顺序降低,在拉伸时,所有这些系统在甲烷水合物与矿物之间的界面处均表现出脆性破坏。相反,在压缩时,甲烷水合物会分解成水和甲烷分子,这是由大应变诱导的力学不稳定性导致的。特别是,怀俄明型蒙脱石基甲烷水合物系统在压缩下的破坏特征是在应变约为0.23时压缩应力突然下降,这使其与二氧化硅基和高岭土基甲烷水合物系统在压缩时的情况有所不同。因此,我们的研究结果为地球上含天然气水合物沉积物系统力学不稳定性的潜在机制提供了分子层面的见解。