Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States.
Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States.
Neurobiol Learn Mem. 2021 Mar;179:107397. doi: 10.1016/j.nlm.2021.107397. Epub 2021 Jan 29.
Human genetic studies established MET gene as a risk factor for autism spectrum disorders. We have previously shown that signaling mediated by MET receptor tyrosine kinase, expressed in early postnatal developing forebrain circuits, controls glutamatergic neuron morphological development, synapse maturation, and cortical critical period plasticity. Here we investigated how MET signaling affects synaptic plasticity, learning and memory behavior, and whether these effects are age-dependent. We found that in young adult (postnatal 2-3 months) Met conditional knockout (Met:emx1, cKO) mice, the hippocampus exhibits elevated plasticity, measured by increased magnitude of long-term potentiation (LTP) and depression (LTD) in hippocampal slices. Surprisingly, in older adult cKO mice (10-12 months), LTP and LTD magnitudes were diminished. We further conducted a battery of behavioral tests to assess learning and memory function in cKO mice and littermate controls. Consistent with age-dependent LTP/LTD findings, we observed enhanced spatial memory learning in 2-3 months old young adult mice, assessed by hippocampus-dependent Morris water maze test, but impaired spatial learning in 10-12 months mice. Contextual and cued learning were further assessed using a Pavlovian fear conditioning test, which also revealed enhanced associative fear acquisition and extinction in young adult mice, but impaired fear learning in older adult mice. Lastly, young cKO mice also exhibited enhanced motor learning. Our results suggest that a shift in the window of synaptic plasticity and an age-dependent early cognitive decline may be novel circuit pathophysiology for a well-established autism genetic risk factor.
人类遗传学研究将 MET 基因确立为自闭症谱系障碍的风险因素。我们之前已经表明,MET 受体酪氨酸激酶介导的信号在早期产后发育中的前脑回路中表达,控制着谷氨酸能神经元形态发育、突触成熟和皮质关键期可塑性。在这里,我们研究了 MET 信号如何影响突触可塑性、学习和记忆行为,以及这些影响是否与年龄有关。我们发现,在年轻成年(出生后 2-3 个月)Met 条件敲除(Met:emx1,cKO)小鼠中,海马体表现出增强的可塑性,通过海马切片中长时程增强(LTP)和长时程抑制(LTD)的幅度增加来衡量。令人惊讶的是,在老年 cKO 小鼠(10-12 个月)中,LTP 和 LTD 的幅度减小。我们进一步进行了一系列行为测试,以评估 cKO 小鼠和同窝对照的学习和记忆功能。与年龄依赖性 LTP/LTD 发现一致,我们观察到在 2-3 个月大的年轻成年小鼠中,空间记忆学习增强,通过海马依赖性 Morris 水迷宫测试评估,但在 10-12 个月的小鼠中空间学习受损。使用条件性恐惧条件反射测试进一步评估了上下文和提示学习,这也表明年轻成年小鼠的联想性恐惧获得和消退增强,但老年成年小鼠的恐惧学习受损。最后,年轻的 cKO 小鼠也表现出增强的运动学习能力。我们的结果表明,突触可塑性窗口的转变和与年龄相关的早期认知能力下降可能是一种既定自闭症遗传风险因素的新型电路病理生理学。