Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004.
Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China.
Dev Neurobiol. 2019 Jan;79(1):36-50. doi: 10.1002/dneu.22645. Epub 2018 Oct 21.
As more genes conferring risks to neurodevelopmental disorders are identified, translating these genetic risk factors into biological mechanisms that impact the trajectory of the developing brain is a critical next step. Here, we report that disrupted signaling mediated MET receptor tyrosine kinase (RTK), an established risk factor for autism spectrum disorders, in the developing hippocampus glutamatergic circuit leads to profound deficits in neural development, synaptic transmission, and plasticity. In cultured hippocampus slices prepared from neonatal mice, pharmacological inhibition of MET kinase activity suppresses dendritic arborization and disrupts normal dendritic spine development. In addition, single-neuron knockdown (RNAi) or overexpression of Met in the developing hippocampal CA1 neurons leads to alterations, opposite in nature, in basal synaptic transmission and long-term plasticity. In forebrain-specific Met conditional knockout mice (Met ;emx1 ), an enhanced long-term potentiation (LTP) and long-term depression (LTD) were observed at early developmental stages (P12-14) at the Schaffer collateral to CA1 synapses compared with wild-type littermates. In contrast, LTP and LTD were markedly reduced at young adult stage (P56-70) during which wild-type mice show robust LTP and LTD. The altered trajectory of synaptic plasticity revealed by this study indicate that temporally regulated MET signaling as an intrinsic, cell autonomous, and pleiotropic mechanism not only critical for neuronal growth and functional maturation, but also for the timing of synaptic plasticity during forebrain glutamatergic circuits development.
随着越来越多的基因被确定与神经发育障碍相关,将这些遗传风险因素转化为影响大脑发育轨迹的生物学机制是至关重要的下一步。在这里,我们报告说,发育中的海马谷氨酸能回路中 MET 受体酪氨酸激酶 (RTK) 的信号转导中断,该 RTK 是自闭症谱系障碍的既定风险因素,导致神经发育、突触传递和可塑性的严重缺陷。在从新生小鼠制备的培养海马脑片中,MET 激酶活性的药理学抑制抑制树突分支和破坏正常树突棘发育。此外,在发育中的海马 CA1 神经元中进行单个神经元敲低 (RNAi) 或 Met 的过表达会导致基础突触传递和长时程可塑性发生相反性质的改变。在前脑特异性 Met 条件性敲除小鼠 (Met ; emx1 ) 中,与野生型同窝仔相比,在早期发育阶段 (P12-14) ,Schaffer 侧枝到 CA1 突触的长时程增强 (LTP) 和长时程抑制 (LTD) 增强。相比之下,在年轻成年阶段 (P56-70) ,LTP 和 LTD 明显降低,而此时野生型小鼠表现出强大的 LTP 和 LTD。这项研究揭示的突触可塑性轨迹改变表明,时间调节的 MET 信号作为一种内在的、细胞自主的和多效性的机制,不仅对神经元生长和功能成熟至关重要,而且对大脑谷氨酸能回路发育过程中的突触可塑性的时间也至关重要。