Suppr超能文献

深度学习在眼底图像中的应用:综述。

Applications of deep learning in fundus images: A review.

机构信息

College of Computer Science, Nankai University, Tianjin 300350, China.

Beijing Tongren Hospital, Capital Medical University, Address, Beijing 100730 China.

出版信息

Med Image Anal. 2021 Apr;69:101971. doi: 10.1016/j.media.2021.101971. Epub 2021 Jan 20.

Abstract

The use of fundus images for the early screening of eye diseases is of great clinical importance. Due to its powerful performance, deep learning is becoming more and more popular in related applications, such as lesion segmentation, biomarkers segmentation, disease diagnosis and image synthesis. Therefore, it is very necessary to summarize the recent developments in deep learning for fundus images with a review paper. In this review, we introduce 143 application papers with a carefully designed hierarchy. Moreover, 33 publicly available datasets are presented. Summaries and analyses are provided for each task. Finally, limitations common to all tasks are revealed and possible solutions are given. We will also release and regularly update the state-of-the-art results and newly-released datasets at https://github.com/nkicsl/Fundus_Review to adapt to the rapid development of this field.

摘要

眼底图像的早期筛查在临床上具有重要意义。由于其强大的性能,深度学习在相关应用中越来越流行,例如病变分割、生物标志物分割、疾病诊断和图像合成。因此,非常有必要通过一篇综述论文来总结眼底图像深度学习的最新进展。在这篇综述中,我们引入了 143 篇应用论文,并进行了精心设计的分层介绍。此外,还介绍了 33 个公开可用的数据集。我们为每个任务提供了总结和分析。最后,揭示了所有任务中常见的局限性,并给出了可能的解决方案。我们还将在 https://github.com/nkicsl/Fundus_Review 上发布并定期更新最新结果和新发布的数据集,以适应该领域的快速发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验