Suppr超能文献

一种用于弱监督白内障眼底图像增强的基于两阶段多尺度注意力的网络。

A two-stage multi-scale attention-based network for weakly supervised cataract fundus image enhancement.

作者信息

Fang Xiaoyong, Wang Yue, Li Xiangyu, Fan Wanshu, Zhou Dongsheng

机构信息

Department, School of Safety and Management Engineering, Hunan Institute of Technology, Hengyang, 421002, China.

National and Local Joint Engineering Laboratory of Computer Aided Design, School of Software Engineering, Dalian, 116622, China.

出版信息

Sci Rep. 2025 Jul 29;15(1):27610. doi: 10.1038/s41598-025-12157-6.

Abstract

Cataract is a major cause of vision loss and hinders further diagnosis. However, enhancing cataract fundus images remains challenging due to limited paired cataract retinal images and the difficulty of recovering fine details in the retinal images. To mitigate these challenges, we in this paper propose a two-stage multi-scale attention-based network (TSMSA-Net) for weakly supervised cataract fundus image enhancement. In Stage 1, we introduce a real-like cataract fundus image synthesis module, which utilizes domain transformation via CycleGAN to generate realistic paired cataract images from unpaired clear and cataract fundus images, thus alleviating the scarcity of paired training data. In Stage 2, we employ a multi-scale attention-based enhancement module, which incorporates hierarchical attention mechanisms to extract rich, fine-grained features from the degraded images under weak supervision, effectively restoring image details and reducing artifacts. Experiments conducted on the Kaggle and ODIR-5K datasets show that TSMSA-Net outperforms existing state-of-the-art methods for cataract fundus image enhancement, even without paired images, and demonstrates strong generalization ability. Moreover, the enhanced images contribute to improved performance in downstream tasks such as vessel segmentation and disease classification.

摘要

白内障是视力丧失的主要原因,并且会妨碍进一步的诊断。然而,由于配对的白内障视网膜图像有限以及在视网膜图像中恢复精细细节的困难,增强白内障眼底图像仍然具有挑战性。为了缓解这些挑战,我们在本文中提出了一种基于两阶段多尺度注意力的网络(TSMSA-Net),用于弱监督的白内障眼底图像增强。在第一阶段,我们引入了一个逼真的白内障眼底图像合成模块,该模块通过CycleGAN利用域变换从未配对的清晰和白内障眼底图像生成逼真的配对白内障图像,从而缓解了配对训练数据的稀缺性。在第二阶段,我们采用了一个基于多尺度注意力的增强模块,该模块结合了分层注意力机制,在弱监督下从退化图像中提取丰富的细粒度特征,有效地恢复图像细节并减少伪影。在Kaggle和ODIR-5K数据集上进行的实验表明,TSMSA-Net在白内障眼底图像增强方面优于现有的最先进方法,即使没有配对图像,也展示出强大的泛化能力。此外,增强后的图像有助于提高下游任务(如血管分割和疾病分类)的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc2e/12307587/28cf9dddc031/41598_2025_12157_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验