Suppr超能文献

SpiNet:用于 Schatten p-范数正则化医学图像重建的深度神经网络。

SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.

机构信息

Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India.

出版信息

Med Phys. 2021 May;48(5):2214-2229. doi: 10.1002/mp.14744. Epub 2021 Mar 22.

Abstract

PURPOSE

To propose a generic deep learning based medical image reconstruction model (named as SpiNet) that can enforce any Schatten p-norm regularization with 0 < p ≤ 2, where the p can be learnt (or fixed) based on the problem at hand.

METHODS

Model-based deep learning architecture for solving inverse problems consists of two parts, a deep learning based denoiser and an iterative data consistency solver. The former has either L2 norm or L1 norm enforced on it, which are convex and can be easily minimized. This work proposes a method to enforce any p norm on the noise prior where 0 < p ≤ 2. This is achieved by using Majorization-Minimization algorithm, which upper bounds the cost function with a convex function, thus can be easily minimized. The proposed SpiNet has the capability to work for a fixed p or it can learn p based on the data. The network was tested for solving the inverse problem of reconstructing magnetic resonance (MR) images from undersampled k space data and the results were compared with a popular model-based deep learning architecture MoDL which enforces L2 norm along with other compressive sensing-based algorithms. This comparison between MoDL and proposed SpiNet was performed for undersampling rates (R) of 2×, 4×, 6×, 8×, 12×, 16×, and 20×. Multiple figures of merit such as PSNR, SSIM, and NRMSE were utilized in this comparison. A two-tailed t test was performed for all undersampling rates and for all metrices for proving the superior performance of proposed SpiNet compared to MoDL. For training and testing, the same dataset that was utilized in MoDL implementation was deployed.

RESULTS

The results indicate that for all undersampling rates, the proposed SpiNet shows higher PSNR and SSIM and lower NRMSE than MoDL. However, for low undersampling rates of 2× and 4×, there is no significant difference in performance of proposed SpiNet and MoDL in terms of PSNR and NRMSE. This can be expected as the learnt p value is close to 2 (norm enforced by MoDL). For higher undersampling rates ≥6×, SpiNet significantly outperforms MoDL in all metrices with improvement as high as 4 dB in PSNR and 0.5 points in SSIM.

CONCLUSION

As deep learning based medical image reconstruction methods are gaining popularity, the proposed SpiNet provides a generic framework to incorporate Schatten p-norm regularization with 0 <p ≤ 2 with an added advantage of providing superior performance compared to its counterparts. The proposed SpiNet also has useful addition of Schatten p-norm value in regularization term being automatically chosen based on the available training data.

摘要

目的

提出一种通用的基于深度学习的医学图像重建模型(命名为 SpiNet),可以强制执行任何 0<p≤2 的 Schatten p-范数正则化,其中 p 可以根据手头的问题进行学习(或固定)。

方法

用于解决逆问题的基于模型的深度学习架构由两部分组成,基于深度学习的去噪器和迭代数据一致性求解器。前者对其施加 L2 范数或 L1 范数,这两种范数都是凸的,并且可以很容易地最小化。这项工作提出了一种在噪声先验上施加任何 p 范数的方法,其中 0<p≤2。这是通过使用主最大化-最小化算法来实现的,该算法用凸函数来逼近代价函数,因此可以很容易地最小化。所提出的 SpiNet 具有针对固定 p 工作的能力,或者它可以根据数据学习 p。该网络用于从欠采样 k 空间数据中重建磁共振(MR)图像的逆问题,并将结果与基于 MoDL 的流行模型的深度学习架构进行比较,该架构沿带有其他压缩感知算法。在 2×、4×、6×、8×、12×、16×和 20×的欠采样率(R)下,对 MoDL 和所提出的 SpiNet 进行了比较。使用多种性能指标,如 PSNR、SSIM 和 NRMSE 进行了比较。对于所有欠采样率和所有度量标准,都进行了双侧 t 检验,以证明与 MoDL 相比,所提出的 SpiNet 的性能更优。对于训练和测试,使用与 MoDL 实现相同的数据集。

结果

结果表明,对于所有欠采样率,与 MoDL 相比,所提出的 SpiNet 显示出更高的 PSNR 和 SSIM,以及更低的 NRMSE。然而,对于低欠采样率 2×和 4×,所提出的 SpiNet 和 MoDL 在 PSNR 和 NRMSE 方面的性能没有显著差异。这是可以预期的,因为学习到的 p 值接近 2(MoDL 施加的范数)。对于较高的欠采样率≥6×,SpiNet 在所有度量标准上都明显优于 MoDL,PSNR 提高高达 4dB,SSIM 提高 0.5 分。

结论

随着基于深度学习的医学图像重建方法的普及,所提出的 SpiNet 提供了一种通用框架,可以将 0<p≤2 的 Schatten p-范数正则化与深度学习相结合,并具有优于同类方法的性能优势。所提出的 SpiNet 还具有有用的附加功能,即可以根据可用的训练数据自动选择正则化项中的 Schatten p-范数值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验