Rastogi Aditya, Yalavarthy Phaneendra K
Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India.
Med Phys. 2020 Oct;47(10):4838-4861. doi: 10.1002/mp.14447. Epub 2020 Sep 6.
To compare the performance of iterative direct and indirect parametric reconstruction methods with indirect deep learning-based reconstruction methods in estimating tracer-kinetic parameters from highly undersampled DCE-MR Imaging breast data and provide a systematic comparison of the same.
Estimation of tracer-kinetic parameters using indirect methods from undersampled data requires to reconstruct the anatomical images initially by solving an inverse problem. This reconstructed images gets utilized in turn to estimate the tracer-kinetic parameters. In direct estimation, the parameters are estimated without reconstructing the anatomical images. Both problems are ill-posed and are typically solved using prior-based regularization or using deep learning. In this study, for indirect estimation, two deep learning-based reconstruction frameworks namely, ISTA-Net and MODL, were utilized. For direct and indirect parametric estimation, sparsity inducing priors (L1 and Total-Variation) and limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm as solver was deployed. The performance of these techniques were compared systematically in estimation of vascular permeability ( ) from undersampled DCE-MRI breast data using Patlak as pharmaco-kinetic model. The experiments involved retrospective undersampling of the data 20×, 50×, and 100× and compared the results using PSNR, nRMSE, SSIM, and Xydeas metrics. The maps estimated from fully sampled data were utilized as ground truth. The developed code was made available as https://github.com/Medical-Imaging-Group/DCE-MRI-Compare open-source for enthusiastic users.
The reconstruction methods performance was evaluated using ten patients breast data (five patients each for training and testing). Consistent with other studies, the results indicate that direct parametric reconstruction methods provide improved performance compared to the indirect parameteric reconstruction methods. The results also indicate that for 20× undersampling, deep learning-based methods performs better or at par with direct estimation in terms of PSNR, SSIM, and nRMSE. However, for higher undersampling rates (50× and 100×) direct estimation performs better in all metrics. For all undersampling rates, direct reconstruction performed better in terms of Xydeas metric, which indicated fidelity in magnitude and orientation of edges.
Deep learning-based indirect techniques perform at par with direct estimation techniques for lower undersampling rates in the breast DCE-MR imaging. At higher undersampling rates, they are not able to provide much needed generalization. Direct estimation techniques are able to provide more accurate results than both deep learning- and parametric-based indirect methods in these high undersampling scenarios.
比较迭代直接和间接参数重建方法与基于深度学习的间接重建方法在从高度欠采样的动态对比增强磁共振成像(DCE-MRI)乳腺数据中估计示踪剂动力学参数方面的性能,并对其进行系统比较。
使用间接方法从欠采样数据估计示踪剂动力学参数需要首先通过解决逆问题来重建解剖图像。然后利用这个重建图像来估计示踪剂动力学参数。在直接估计中,无需重建解剖图像即可估计参数。这两个问题都是不适定的,通常使用基于先验的正则化或深度学习来解决。在本研究中,对于间接估计,使用了两个基于深度学习的重建框架,即ISTA-Net和MODL。对于直接和间接参数估计,采用了稀疏诱导先验(L1和总变差)以及作为求解器的有限内存布罗伊登-弗莱彻-戈德法布-香农算法。使用Patlak药代动力学模型,在从欠采样的DCE-MRI乳腺数据估计血管通透性( )方面,系统地比较了这些技术的性能。实验涉及对数据进行20倍、50倍和100倍的回顾性欠采样,并使用峰值信噪比(PSNR)、归一化均方根误差(nRMSE)、结构相似性指数(SSIM)和Xydeas指标比较结果。将从全采样数据估计的 图用作地面真值。所开发的代码作为开源代码https://github.com/Medical-Imaging-Group/DCE-MRI-Compare提供给感兴趣的用户。
使用十名患者的乳腺数据(五名患者用于训练,五名患者用于测试)评估重建方法的性能。与其他研究一致,结果表明直接参数重建方法比间接参数重建方法具有更好的性能。结果还表明,对于20倍欠采样,基于深度学习的方法在PSNR、SSIM和nRMSE方面表现更好或与直接估计相当。然而,对于更高的欠采样率(50倍和100倍),直接估计在所有指标上表现更好。对于所有欠采样率,直接重建在Xydeas指标方面表现更好,该指标表明边缘在幅度和方向上的保真度。
在乳腺DCE-MR成像中,对于较低的欠采样率,基于深度学习的间接技术与直接估计技术表现相当。在更高的欠采样率下,它们无法提供所需的泛化能力。在这些高欠采样场景中,直接估计技术能够比基于深度学习和基于参数的间接方法提供更准确的结果。