Suppr超能文献

实现对微腔中表面和整体流体流动的独立控制。

Achieving Independent Control over Surface and Bulk Fluid Flows in Microchambers.

作者信息

Tansi Benjamin M, Manna Raj Kumar, Shklyaev Oleg E, Peris Matthew L, Balazs Anna C, Sen Ayusman

机构信息

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6870-6878. doi: 10.1021/acsami.0c21291. Epub 2021 Feb 2.

Abstract

To fully realize the potential of microfluidic platforms as useful diagnostic tools, the devices must be sufficiently portable that they function at the point-of-care, as well as remote and resource-poor locations. Using both modeling and experiments, here we develop a standalone fluidic device that is driven by light and operates without the need for external electrical or mechanical pumps. The light initiates a photochemical reaction in the solution; the release of chemical energy from the reaction is transduced into the spontaneous motion of the surrounding fluid. The generated flow is driven by two simultaneously occurring mechanisms: solutal buoyancy that controls the motion of the bulk fluid and diffusioosmosis that regulates motion near the bottom of the chamber. Consequently, the bulk and surface fluid flows can be directed independently of one another. We demonstrate that this exceptional degree of spatiotemporal control provides a new method for autonomously transporting different-sized particles in opposite directions within the chamber. Thus, one device can be used to both separate the particles and drive them to different locations for further processing or analysis. This property is particularly useful for analyzing fluids that contain multiple contaminants or disease agents. Because this system relies on intrinsic hydrodynamic interactions initiated by a portable, small-scale source of light, the device provides the desired level of mobility vital for the next generation of functional fluidic platforms.

摘要

为了充分发挥微流控平台作为实用诊断工具的潜力,这些设备必须具备足够的便携性,以便能在护理点以及偏远和资源匮乏地区发挥作用。通过建模和实验,我们在此开发了一种独立的流体装置,该装置由光驱动,无需外部电动或机械泵即可运行。光引发溶液中的光化学反应;反应释放的化学能被转化为周围流体的自发运动。产生的流动由两种同时发生的机制驱动:控制主体流体运动的溶质浮力和调节腔室底部附近运动的扩散渗透。因此,主体流体流动和表面流体流动可以相互独立地引导。我们证明,这种特殊程度的时空控制为在腔室内以相反方向自主运输不同大小的颗粒提供了一种新方法。因此,一个装置可用于分离颗粒并将它们驱动到不同位置进行进一步处理或分析。此特性对于分析含有多种污染物或病原体的流体特别有用。由于该系统依赖于由便携式小型光源引发的内在流体动力相互作用,该装置为下一代功能性流体平台提供了至关重要的所需移动性水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验