Chemometrics and Analytical Technology, Department of Food Science, Rolighedsvej 26, DK-1958, University of Copenhagen, Copenhagen, Denmark.
Chemometrics and Analytical Technology, Department of Food Science, Rolighedsvej 26, DK-1958, University of Copenhagen, Copenhagen, Denmark.
Trends Plant Sci. 2021 Apr;26(4):324-337. doi: 10.1016/j.tplants.2020.12.014. Epub 2021 Jan 29.
Forward-focused molecular genetics is successfully framing DNA diversity and mapping primary gene functions. However, abandoning the classic Linnaean fingerprint link between the phenome and genome by suppressing gene interaction (pleiotropy), has resulted in a genome-to-phenome gap and poor utilization of molecular data. We demonstrate how to bridge this gap by using an example of a barley mutant seed model, where pleiotropy is observed as covarying global molecular patterns that define each endosperm. Global coherence was discovered as a covariate coordinator within and between local genotype specific fingerprints. This implies that any of these fingerprints can select its recombinant global phenotype variant, including composition. Introducing the law of coherence, and the movement of gene complexes by chemical fingerprint traits as selectors, introduces a revolution in understanding physiological molecular genetics and plant-breeding.
正向聚焦的分子遗传学成功地构建了 DNA 多样性并绘制了主要基因功能图谱。然而,通过抑制基因相互作用(多效性),摒弃表型和基因组之间经典的林奈指纹链接,导致了基因组到表型的差距和分子数据的利用不足。我们通过一个大麦突变种子模型的例子来演示如何弥合这一差距,在这个例子中,多效性表现为共同变化的全局分子模式,定义了每个胚乳。全局一致性被发现为协变量协调者,存在于局部基因型特定指纹之间和内部。这意味着这些指纹中的任何一个都可以选择其重组的全局表型变体,包括组成。引入一致性定律,以及基因复合物通过化学指纹特征作为选择者的运动,为理解生理分子遗传学和植物育种带来了革命性的变化。