Suppr超能文献

数据集成促进全球生物多样性综合研究。

Data integration enables global biodiversity synthesis.

机构信息

Section of Botany, Carnegie Museum of Natural History, Pittsburgh, PA 15213;

Global Biodiversity Information Facility, Secretariat, DK-2100 Copenhagen Ø, Denmark.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2018093118.

Abstract

The accessibility of global biodiversity information has surged in the past two decades, notably through widespread funding initiatives for museum specimen digitization and emergence of large-scale public participation in community science. Effective use of these data requires the integration of disconnected datasets, but the scientific impacts of consolidated biodiversity data networks have not yet been quantified. To determine whether data integration enables novel research, we carried out a quantitative text analysis and bibliographic synthesis of >4,000 studies published from 2003 to 2019 that use data mediated by the world's largest biodiversity data network, the Global Biodiversity Information Facility (GBIF). Data available through GBIF increased 12-fold since 2007, a trend matched by global data use with roughly two publications using GBIF-mediated data per day in 2019. Data-use patterns were diverse by authorship, geographic extent, taxonomic group, and dataset type. Despite facilitating global authorship, legacies of colonial science remain. Studies involving species distribution modeling were most prevalent (31% of literature surveyed) but recently shifted in focus from theory to application. Topic prevalence was stable across the 17-y period for some research areas (e.g., macroecology), yet other topics proportionately declined (e.g., taxonomy) or increased (e.g., species interactions, disease). Although centered on biological subfields, GBIF-enabled research extends surprisingly across all major scientific disciplines. Biodiversity data mobilization through global data aggregation has enabled basic and applied research use at temporal, spatial, and taxonomic scales otherwise not possible, launching biodiversity sciences into a new era.

摘要

在过去的二十年中,全球生物多样性信息的可及性大幅增加,这主要得益于博物馆标本数字化的广泛资助计划以及大规模公众参与社区科学的出现。有效利用这些数据需要整合不相关的数据集,但整合生物多样性数据网络的科学影响尚未量化。为了确定数据集成是否能够开展新的研究,我们对 2003 年至 2019 年期间发表的 4000 多项使用世界上最大的生物多样性数据网络——全球生物多样性信息设施(GBIF)中介数据的研究进行了定量文本分析和文献综合。自 2007 年以来,GBIF 可提供的数据增加了 12 倍,全球数据使用量也呈现出同样的趋势,2019 年每天约有两篇使用 GBIF 中介数据的出版物。作者、地理范围、分类群和数据集类型等方面的数据使用模式多种多样。尽管 GBIF 促进了全球作者的参与,但殖民科学的遗留问题依然存在。涉及物种分布模型的研究最为普遍(调查文献的 31%),但最近的研究重点从理论转向了应用。在 17 年的研究期间,一些研究领域(例如宏观生态学)的主题流行度保持稳定,但其他主题的流行度则相应下降(例如分类学)或增加(例如物种相互作用、疾病)。尽管以生物学科领域为中心,但通过全球数据聚合调动生物多样性数据的研究范围令人惊讶地涵盖了所有主要科学学科。通过全球数据汇总来调动生物多样性数据,使基础研究和应用研究能够在时间、空间和分类学尺度上进行,否则这些研究是不可能实现的,这将生物多样性科学带入了一个新时代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f68a/8017944/0006f1573589/pnas.2018093118fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验