Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
Sci Rep. 2021 Feb 1;11(1):2704. doi: 10.1038/s41598-021-80970-w.
Pediatric tuberculosis (TB) remains a global health crisis. Despite progress, pediatric patients remain difficult to diagnose, with approximately half of all childhood TB patients lacking bacterial confirmation. In this pilot study (n = 31), we identify a 4-compound breathprint and subsequent machine learning model that accurately classifies children with confirmed TB (n = 10) from children with another lower respiratory tract infection (LRTI) (n = 10) with a sensitivity of 80% and specificity of 100% observed across cross validation folds. Importantly, we demonstrate that the breathprint identified an additional nine of eleven patients who had unconfirmed clinical TB and whose symptoms improved while treated for TB. While more work is necessary to validate the utility of using patient breath to diagnose pediatric TB, it shows promise as a triage instrument or paired as part of an aggregate diagnostic scheme.
儿科结核病(TB)仍然是一个全球性的健康危机。尽管取得了进展,但儿科患者仍难以诊断,约有一半的儿童结核病患者缺乏细菌确认。在这项初步研究(n=31)中,我们确定了一个由 4 种化合物组成的呼吸特征,并随后建立了一个机器学习模型,该模型能够准确地将确诊结核病(n=10)的儿童与患有另一种下呼吸道感染(LRTI)(n=10)的儿童区分开来,在交叉验证折叠中观察到的敏感性为 80%,特异性为 100%。重要的是,我们证明,呼吸特征还可以识别另外 9 名患有未经证实的临床结核病的 11 名患者,这些患者的症状在接受结核病治疗后有所改善。虽然还需要更多的工作来验证使用患者呼吸来诊断儿科结核病的效用,但它显示出作为分诊工具或与综合诊断方案结合使用的潜力。