Karakhanyan Vage, Lefier Yannick, Eustache Clément, Grosjean Thierry
Opt Lett. 2021 Feb 1;46(3):613-616. doi: 10.1364/OL.411108.
Using a simplified hydrodynamic model of the free electron gas of a metal, we theoretically investigate optically induced DC current loops in a plasmonic nanostructure. Such current loops originate from an optical rectification process relying on three electromotive forces, one of which arises from an optical spin-orbit interaction. The resulting static magnetic field is found to be maximum and dramatically confined at the corners of the plasmonic nanostructure, which reveals the ability of metallic discontinuities to concentrate and tailor static magnetic fields on the nanoscale. Plasmonics can thus generate and tune static magnetic fields and strong magnetic forces on the nanoscale, potentially impacting small scale magnetic tweezing and sensing as well as the generation of magneto-optical effects and spin waves.
利用金属自由电子气的简化流体动力学模型,我们从理论上研究了等离子体纳米结构中的光诱导直流电流环。这种电流环源于一种依赖于三种电动势的光整流过程,其中一种电动势源于光学自旋轨道相互作用。结果发现,产生的静磁场在等离子体纳米结构的角处最大且显著受限,这揭示了金属不连续性在纳米尺度上集中和调整静磁场的能力。因此,等离子体学可以在纳米尺度上产生和调节静磁场以及强磁力,这可能会影响小尺度磁镊和传感,以及磁光效应和自旋波的产生。