Suppr超能文献

果蝇 tRNA 结构-功能图谱趋同的结构和遗传决定因素。

Structural and Genetic Determinants of Convergence in the Drosophila tRNA Structure-Function Map.

机构信息

Quantitative and Systems Biology Program, University of California, Merced, CA, 95343, USA.

Department of Biology, Cumberland University, 1 Cumberland Square, Lebanon, TN, 37087, USA.

出版信息

J Mol Evol. 2021 Feb;89(1-2):103-116. doi: 10.1007/s00239-021-09995-z. Epub 2021 Feb 2.

Abstract

The evolution of tRNA multigene families remains poorly understood, exhibiting unusual phenomena such as functional conversions of tRNA genes through anticodon shift substitutions. We improved FlyBase tRNA gene annotations from twelve Drosophila species, incorporating previously identified ortholog sets to compare substitution rates across tRNA bodies at single-site and base-pair resolution. All rapidly evolving sites fell within the same metal ion-binding pocket that lies at the interface of the two major stacked helical domains. We applied our tRNA Structure-Function Mapper (tSFM) method independently to each Drosophila species and one outgroup species Musca domestica and found that, although predicted tRNA structure-function maps are generally highly conserved in flies, one tRNA Class-Informative Feature (CIF) within the rapidly evolving ion-binding pocket-Cytosine 17 (C17), ancestrally informative for lysylation identity-independently gained asparaginylation identity and substituted in parallel across tRNA paralogs at least once, possibly multiple times, during evolution of the genus. In D. melanogaster, most tRNA and tRNA genes are co-arrayed in one large heterologous gene cluster, suggesting that heterologous gene conversion as well as structural similarities of tRNA-binding interfaces in the closely related asparaginyl-tRNA synthetase (AsnRS) and lysyl-tRNA synthetase (LysRS) proteins may have played a role in these changes. A previously identified Asn-to-Lys anticodon shift substitution in D. ananassae may have arisen to compensate for the convergent and parallel gains of C17 in tRNA paralogs in that lineage. Our results underscore the functional and evolutionary relevance of our tRNA structure-function map predictions and illuminate multiple genomic and structural factors contributing to rapid, parallel and compensatory evolution of tRNA multigene families.

摘要

tRNA 多基因家族的进化仍然知之甚少,表现出一些不寻常的现象,例如通过反密码子移位替换实现 tRNA 基因的功能转换。我们改进了来自 12 种果蝇物种的 FlyBase tRNA 基因注释,整合了先前鉴定的直系同源物集,以比较单个位点和碱基对分辨率的 tRNA 体的替换率。所有快速进化的位点都位于位于两个主要堆积螺旋结构域界面的同一金属离子结合口袋内。我们独立地将我们的 tRNA 结构-功能映射器 (tSFM) 方法应用于每个果蝇物种和一个外群物种 Musca domestica,并发现,尽管预测的 tRNA 结构-功能图谱在果蝇中通常高度保守,但一个快速进化的离子结合口袋内的 tRNA 类信息特征 (CIF)-位于 Cytosine 17 (C17) 内,该特征在进化过程中独立于赖氨酸酰基化身份获得天冬酰胺酰基化身份,并在至少一次,可能多次,在 tRNA 同源物中平行取代。在 D. melanogaster 中,大多数 tRNA 和 tRNA 基因在一个大型异源基因簇中共阵列,这表明异源基因转换以及在密切相关的天冬酰胺酰基-tRNA 合成酶 (AsnRS) 和赖氨酸酰基-tRNA 合成酶 (LysRS) 蛋白中 tRNA 结合界面的结构相似性可能在这些变化中发挥了作用。先前在 D. ananassae 中鉴定的 Asn-to-Lys 反密码子移位替换可能是为了补偿该谱系中 tRNA 同源物中 C17 的趋同和并行获得。我们的结果强调了我们的 tRNA 结构-功能图谱预测的功能和进化相关性,并阐明了导致 tRNA 多基因家族快速、平行和补偿进化的多个基因组和结构因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b898/7884595/ffcee891ee21/239_2021_9995_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验